CSPro

User’s Guide

Version 2.4

International Programs Center
U.S. Census Bureau
Washington DC 20233-8860

Phone: 1-301-763-1451

Fax: 1-301-457-3033
E-mail: CSPro@lists.census.gov

17 December 2003

mailto:CSPro@lists.census.gov

Table of Contents

CSPIO USEIS GUITEoeeiiiiiiiie ittt ettt n e n et st e s e e n e e ssre e e et e nnre e e neeennnees 1
2 ¥ LY Lol 0] 1 [od =T o} £ TP PRUPRRRP 1
Talgeo [0ex iloT i (ol @S] = o TP PUT TP 1
CSPIO CONCEPLS .. e e e 2
Data DICHONAIIESeeeeeeeiee ettt e ettt e e e e e e e bbbt e e e e e e e e aanbbeeeeaaeeeeannnbneeaaaeeas 2
Data ENtry APPHCALIONS ...coiiiiiieeii ettt e e e et e e e e e e e e anareeeaaaeeas 2
Batch Editing APPIICALIONSeeiiiiiiiee ettt e e e e ee e e e 3
Cross Tabulation APPlICALIONSuuiiiieeiiciiie e e e e e e e arreaeees 4
Trees and WINAOWSc.cuiiiiiieiiieeie ettt sn e s e s e s nnneennneenas 5
Reconciling Dictionary ChanQESccoiccuuiiiiiiee et e s e e e e e s er e e e e e s s nnnaanneeeee s 5
HOW L0 e e 5
Create applications OF fil@Sooceiiiiiiie e 5
Create a NeW APPICALIONueiiiiiii i e e e e srraaeeeee s 5

Create a New Data DICHONAIYooiuiiiiiiiee ettt e e aeea e 6

Create a New Data Entry APPlICAtIONcoiiiiiiiiiiiiiei e 6

Create a New Batch Edit APPlICALIONccoiiiiiiiiiiiiiiie e 7

Create a New Cross Tabulation AppliCation ... 8

Open applicatioNS OF flEScoi i 8
Open an EXIisting APPHCAtIONcooi i e e srrrae e 8

Move around apPliCALIONS.uuuiiiieee e e e e e e s s e e e e e s s s r e e e e e s s nnnnrraneeeeees 9
Moving Around APPIICALIONScooiiiiiiiiie e e s 9

Save and close apPliCAIONSuviiiiiee e 10
SF-\V/SI= L A o] o] 1o 1o o PR 10

([0 1T Ir= T AN o] o] 1o ¥ {01 o 1S PSR 10

Insert or drop files from appliCatioNScoooiii i 11
Insert a File in an APPICALIONoiiii i 11

Drop a File from an APPlCAtioN.............coiiiiiiiiiiiiee e 11

DEfiNE DICHONAIY TYPE . neetieiieeee ettt e e e e e e e e e bbb re e e e e e e e e snbbeaeeeaeas 11

L 110 TP P PURTRR PP 12
Print all or part of @ DOCUMENTuuiiiiiiiiie e 12
Change the Print PAge SEIUPcieeei oot e e e e e 12

RUN CSPIO tOOIS ...ttt et n e e e nn e nes 13
RUN @ CSPIO TOOI ...ttt 13
Change VIeW and WINAOWSuuiiiiieeee e e s s s e e e e e s s st ee e e e e e s sennnrnee e e e e e s ennnnneees 14

(O g T o T 0 L= = PSR 14

1O g TaTo T IR AT oo [1T PR 14

LCT=] 0 1 =] | o TR 15
LTS O o [o TSP PPRPT 15
SUMMAITIES .ttt e ettt ettt e e e e oot ettt et e e e e e s o et bete e e e e e e e e aan bbb eeeeaaaeeaaanbbbeeeeaeeeaaannbbsaeeaaeeaaannne 15
CSPro MENU SUMMAIY......cciiiiiiiieeeee e 15
CSPro ToOoIDar SUMMATYoooiiiiieiiie e e e e e e e e e e aeneaeeeas 16

D= L=l D Toa (0] 1 -1 o VAU TUT TP 16
Introduction t0 Data DICtIONAIIEScccviiiiierieierie ittt 16
(D] Toi{[o] g F= T A O] g (o1 =T o] £ TP PRTTRP 17
(D11 (o] 4 T- 1 V2T PUTTTR PP 17
(DTt (o] g F= T =T S PR PP 17

(= o1 PP PP RO 17

NAIMIES ..ttt ettt et e 18

Questionnaires and File Organizationceveeiiiiciiiiee e e 19

(O I8 1=1S) (o] a1 aT= LT T URRRPPPRRRRRRE 19

Data File OrganiZationcccciiociiieiiieee e s e e e e e s s s e e e e e s s snrree e e e e e s s s snsrnaeeeees 20

LBV IS . et e e e e e b e b et e e e e e e e e bbb re e e e e e e e e annrareeas 21
LBVBIS et e e e e e e bbb a e e e e e e e e nb b aeaaaeas 21
[entifiCation IEEIMS ...t e e e e e e e 22

LEVEI PrOPEITIES ...eeiiieeiiiitie ettt ettt e et e e e e e e et b e e e e e e e e e sanbbeaeeaaeas 22
=T oo (o LS TP UURPRR PR 22
[T oo {0 LR T PRI 22

L= ToT o] (o I 1Y o1 23

=T oTo] (o [o (0] o 1= 1= O 23

= ToTo] (o I 1Y o LIV 2 1 U SO 24
=0 {8 = O 24
MaximUuM NUMDBDETviiii e seaeeas 25

10T 0 01 TP P P PP PPPPPPRPN 25

[T oTo] (o [N 1 =] 10 1 J TR TP RO 25

[EEIM PrOPEITIES ..ottt ettt e e e e e e st be et e e e e e e s nbbbeeeaaeeeeanns 26
SEArtiNG POSITION ... e e re e e e e e e nneeees 26

[T 0o |1 [P R PP OO 27

(D e B Y o1 S PP PPPPPPPPPP 27

BN Ty 28

O CCUIMEBICES ...ttt ettt e e e e e ettt e e e s e ettt e e e e s s s s b b e et e e e e e e s e nsbrereeeeeeeaannnnees 28
DECIMAI PIACESeeeiiiiiiiie ettt e e s snba e e s snnnee s 28
DeCiMal ChArACIETvviiiiiiiiee ettt e e seneeas 29

FA] (o T | PP PRP SR 29

BT 2= 110 =2 PSPPI 29
VAIUE SBES ...eeiiiie ittt e ettt e e e e e e e bbb e e e e e e e e et b e e e e e e e e e annnees 29

ValUE SEE PrOPEITIESceiiiiiiiiiiieie ettt e e e e e et re e e e e e e e anenees 30

LY 2= 1[0 1T PRPT 31
Y= LT o ST TP UUUPUPPUPPRN 31
Creating a Dictionary for @ NeW File.........ocuuiiiiiiiii e 31
Creating a Dictionary for an EXiSting File ... 32
Converting ISSA or IMPS DICHIONAIIESuuviiiiieeiiiiiiiiie e e e e s s e e e e e ee e e e e e snnneeees 32

[[1V (o PP PP PP PP PRPPPPTPPPP 32
Move Around @ DICHONAIYc.euviiiiie e e e e e e e e e s s s s e e e e e e e e snnrnneees 32
View the DICtIONArY LAYOULcuiieiiiiiiiiiiiee e s st e e e s s s seieee e e e e e s s s ee e e e e e e s ennnnreeeeeeeeas 33
Add Dictionary EIEMENESuuiiiiiei i e e e e e 33
INSert DICtioNAry EIEMENTS.uuiiiie i iiiiiiiee e e e e e s e e e e e e e s ereaeee s 35
Modify DIictionary EIEMENTSuuiiiiiiiii ittt e e e e e e seneeee s 35
Delete Dictionary EIEMENTSuuiiiiiiiiiiii et 36
UNdo and ReAO CRANGEScuuiiiiiiaie ettt ettt e et e e e e e e e e beeeeas 36
Select Several Dictionary EIBMENTSoooiuiiiiiiiiie e 36
Move Dictionary EIemMents ArOUNGuuiiiiieaiiiiiiieie et e e 37
Convert ILEMS 10 SUDILEMISooiiuiiiii ittt seeee s 37
Select Relative or Absolute POSItIONING..........uuviiieiiiiiiiiee e 37
[T To T ox 1o T g F= VA =1 1= o =T o1 £ 38
Document Dictionary EIEMENLScoiieiiiiciiiiiie et e s e e srre e e e e e e e nnnaene s 39
Save Dictionary AS NEW Fileuiiiiiiiii e 39
SUMIMAIIES .ttt ettt ettt e e ettt e e sttt e e e sb b et e e sk be e e e s abbe e e e et be e e e e bbeeeesabbeeeesabbeeeesnbbeeeenan 39
Data Dictionary MENU SUMIMAIY.....cc.icaiiiuiiiiieiaaeeeeaiitireeeae e e s e atbseeeeaaessssnnbsseeeaaaeesannresees 39
Data Dictionary TOoIDar SUMMATYoocuuiiiiiiaaaiiiie et 40
Data Dictionary KEYS SUMIMAIY......cciiiiiiiiiiiiieiaee e aitiieee e e e e e e aibereeeaa e s s s snnbeseeeaaaeesansresees 41

[= L= a1 Y/ 1S Mo o = SRS 42
Introduction to Data ENtry DESIGNETcciiiieeieeieee e st e e e e s s s e e e e s e e rer e e e e e s s snnnanneeeeees 42
(D F 1 11V 0] o =T o £ PP PRPRNS 43

(D= L= W =1 VY =1 { T Yo [o] oo 1= 43

Operator vs. System CONtrolledoeeiiiiiiiiiiieee e e 43
Data ENtry Pathouiiiiiii i e e e e e e 44
O IS e 44
[1] [0 TP P UPRPTR PP 45
0L (= £ T 46
Y= LT o ST TP UUUPUPPUPPRN 46
Creating a New Data Entry APPlICAtIONueiiiiiiiiiiiiiieiie e 46
Deciding What FOrms and ROSIErS t0 USEcoiiiiiiiiiiiiiiieieeiiiieee e a7
Converting an ISSA Data Entry APPlICAtIONccovvviiiiiieee e a7
Converting an IMPS Data Entry AppliCatioN.........c.ooccuiiiieiee e 48
[[1V (o PP PP PP PP PRPPPPTPPPP 48
Generate a Default Data Entry ApPlICAtIoNccceiiiiciiiiiieie e 48
2o [o I I 011 o SRR 49
Yo (o 1= T o] 1 PP PUPPPROTPRRN 49
Add FIelds 10 @ FOMMeiiiiiiiee ettt e e ee e e e e e 49
Change Drag OPLIONSooiuueiiiiiiie ettt e e e e e e st e e e e e e e e nneeees 50
A TEXETO @ FOIM .ot e e e e e e e e e e 50
Draw BOXES 0N @ FOIM c.cooiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeteeeeeeeee ettt 51
USE ROSIEIS ... 52
CrEALE @ ROSTEI ... ittt bbb bbb ebebebbebbnbnnnnnnes 52
Yo [o I I o110 FS (o = W L 11 (- OSSR 52
Resize and Reposition ThiNgs in @ ROSIENcuiiiiiiiiiiiieiece e 53
Change Column Heading Propertiesveeiiiiiiiiieee e e e e 53
Change Roster Occurrence Labels...........ouvveeiiiiiiiiieii e 54
Join and Split ROStEr COIUMNS........cciiiiiiiiice e e e 54
REAIMTANGE THINGS ... ettt e bbb e e e e e e e e sb b b re e e e e e e e e aanneaneeas 54
MOV TRINGS ..ttt ettt ettt e e e e e e ettt e e e e e e e s bt bb e e e e e e e e e sanbbeaeeaaens 54
ALIGN THINGS .ottt et e e e e s ab et e e e e e e e s bnbbeeeeaaeeaaan 55
Cut, CopY, OF PASLe TRINGSuueiiiiiaiiiiiieiie et e e e e e 56
MOAIFY TRINGS oot e e e e e e e e e e bbb e e e e e e e e e aannbeneeas 57
Change FOrms File Propertiesooouuiiiiiiiaeiiiieee et 57
Change Level PrOPertie€suuuiiiiie et e s e e e e e e e e e s 57
Change FOrmM PrOPEITIES.......uuuiiiiee e it e e e e e e s se e e e e e s s st r e e e e e s es e ee e e e e e s e nnnneees 58
Change Field Propertiesuuuiiieiiiiiiiiiieee s s s eee e e e e e s s s e e e e e e e e nnnneees 58
Change ROSLEr PrOPEITIESuvviiiiiiei e e e s e e e e s eee e e e e e s re e e e e e e e nneeees 59
Change TeXt PrOPEITIESuvveiieiee e et s e e e e e e s s e e e e e e s e s ee e e e e e s e nnnnnees 60
Delete FOrM EIBMENTSccoiuiiiiiiiiiiie ettt e st seaee s 60
UNAO/REAO ChaNQES. eiiieiiiiieeiiiite ettt e e e e e e st b ae e e e e e e e e snbbeaeeeaeas 60
Change Entry CharacCteriStiCS.uueiiiiiiiiiiiiiiiee ettt a e eeeaeee s 61
Change the Order Of ENIYcoii oot 61
Change Data ENtry OPLIONScciiiiiiiiiiiiiieee ettt 61
Change Default TEXE FONT.........ooiiiiiii e 64

(O g TaTo [T i< o o o | PSS 64
Change EIMOr SOUNcceviiiiiie e e e e e s e e e e e e s e s e e e e e e s e nnnneees 64
FYo [0 Ir= T Lo IR\ oo 11 3 YA =d doToT=To (U1 =T SR 64
Y22 o o Lo OSSR 64
Create and Edit LOGQIC........cccvrriieiie s e i ee e e e s st e e e e e s s s e e e e e e s s s e e e e e e e e nnnnnees 65

Set Compiler DEfaUILSuviiiiiie e 66
1070] 101 o 1[0 oo | (o RSP PRPT 67
Test and RUN APPHCALIONS.....coiii i e e ae e e e e e e e 67
Run a Data ENntry APPlICALION ... 67
Setup @ ProdUCiON SYSEEM ...ttt et e e e e e e eeneeee s 67
Installing Data Entry APPlICAtIONSccoiiiiiiiiiiiie e 67
RUN Production Data ENTIYoooiieiiiiiieeeeeie et 68
SUMIMAIIES .ttt ettt e ettt e e ettt e e sttt e e ekttt e e skt e e e e s abbe e e e s abbe e e e e bbeeeesabbeeeesabbeeeesabbeeeenan 70

Data Entry Designer MENU SUMMAIY.........uuurrireeeiiiiirireereeessssssnsneeeeeessssssrsneseseessssnnsssneees 70

Data Entry Designer TOOoIbar SUMMATYcciveeiiiiiiiiiiiiee e e e e e e e e e snavaeees 71
Data Entry Designer KEYS SUMMAIY.......ccuuuriireeiiiiiiiiirereeeessssnseeeeseessssnnsssneessesssssnssssneees 72

2= L] o T =0 111 o RS 73
Introduction t0 BatCh EditiNguueiiiiiiiiiii ettt a e 73
[t 1) o JE 0] g ToT=7 o] £ SR 74
Yo == o I = o U P 74
o [== PP PPROTPPP 75
o 11 O o =T PP PPRTPRP 76
o 1) 10T oSS 76
4T 01U = L4) o P PR 77
StatiC IMPULALION ...t e e e e e e e s bbb e e e e e e e e s ennbeeeeas 77
Dynamic Imputation (HOt DECK).......c.coiiiiiiiiiiiiee et 78
Y= LT o ST TP PUUTUPPUPPN 79
[T o [T g Vo I = g (o] £ TP PUTTTT PR 79
(70 g 1Tt i ol =g (o] £= TR 80

[[0 11V (o T TSP TP PP PT PP PPPPPPPPPPPTPPOR 81
(O g = Tao T 3N o 10 o = 81
Moving Around a Batch APPlICAtIONccuvviiiiieei e e 81
Manipulate AULOMALIC REPOISueiiieeiiiiiiiiiie e s r e e e s s s e e e e e s s s e e e e e e e e e snnrnneees 82
Create a SPeCIialiZed REPOIT.........uuiiiiiee e s e e e e e e e e s s e e e e e e s annrneeees 82
USE HOE DECKS....coiiiiiiie ittt sttt e ettt e e s st e e e s sbbe e e e s nnaeeeeene 83
Set Compiler DEFAUILS.........oooi e 83
Compile an APPHCALIONcoii e e e e e e e e e e e e s anebeeeeas 84
R e I= AN o] o] [Tor=1 i o] o I TP UURTTT PR 85
INEEIPIET REPOITS ...t s 86
RUN Production BatCh EditS...........ciiiiiiiiiiiiiiiee ettt 86
SUMIMAITIES .ttt ettt e oottt et e e e e e et bt ettt e e e e e s o a b bete et e e e e e e aan bbb eeeeaaeeeaaanbbbeeeeaeeesaannbbeaeaaaeaaaannne 88
Batch Edit MENU SUMMIAIYuuiiiiieee it e e e s s st e e e e s s snrrae e e e e e s s s snnreaeeeeeeeeesnnrnneees 88
Batch Edit TOOIDar SUMMAIY........ccoviiiiiiiiiiiccc s e e e e e e e e e nnnrnee e 89
Batch Edit KEYS SUMMIAIYc.evriiiiie et e e e s s st r e e e e e s saee e e e e e s s s snnrane e e e e e e e e snnrnneees 89
CrOSS TADUIALION ittt e e e e e ettt e e e e e e s bbae e e e e e e e e s eanbbeneaaaeeeaannes 20
Introduction to CroSS TaBUIALIONcciiiiiiiie e e e e 20
CroSS TabUIAtioN CONCEPLSuuueiiiiieiiiiiiii et e ettt e e e e e e e st e e e e e e e e e e aabbeeeeaaaeeaaanbbeaeeaaeeeaaannes 91
ATEA PIOCESSING ...uvtttiiiieeee ittt et e e ettt e e e e e e ettt e e e e e e e e aaa b b e et e e e e e e s e aaabbeeeeaaeeeaaanbbeeeaaaaeas 91
Y= LT o ST TP PUUTUPPUPPN 92
Creating a Frequency DiStriDULIONcoiciiiiiiec e 92
Creating @ Cross TabUIAtiON..........uuviiiiiii e e e e e e e s e e e e e e s snnrneeees 92

[[1V (o PP PP PP PP PRPPPPTPPPP 93
Create @ TaDIEooo e 93
Tabulate Items with Multiple OCCUITENCESuvvviiiiiiiiieiie e 94
DEfINE 8 UNIVEISE ...ttt e e e ettt e e e e e e e e bbb b e e e e e e e e e aannbnneeas 94
Change Tabulation Parameters.t 95
INCIUAE PEICENTS ...ttt e e e e e ettt e e e e e e e s aabbeeeaaaeeas 96
Handle Undefined VAlUES............uiiiiiiii e 96
Tabulate Values and/or WeIghtSoooiiiiiieeiee e e e e 97
Tabulate by GeographiC AFa........cc.uuuiiiiiie et e e e e e 98
Create an Area NaMES FIle 98
Change the TabIe THtleeviie e e e e e e e e s enreae s 98

F X (o = T =1 o] PR 99

T E=T o A= T 1= o[PP 99
1o 113 VA= Y 1= L] [99
DeElEte @ TADIE ...eiiiiieiie e 100
RUN @ TADUIALION ... e e e e e e e e e eanbee e 100

Create a Thematic Map Of RESUISccoiiiiiiiiiicc e 101

SelECt TADIE CIIS..... i e 102
Copy All or Part 0f @ TabIeccoociiieii et rr e e e e e e 102
SAVE TADIES ...ttt e e e e e e e e s b e e e e e e e e e e aane 103
PHNE TADIES. ...ttt e e e e e et e e e e e e e e e aanbbeeeeas 103
SUMIMIAITES .ttt oottt et e e e e ettt et e e e e o e ke bbe e e e e e e e e s bbb beeeea e e e e anbbbbeeeaaeseaannbbnaeeaaaesaannnes 104
Cross Tabulation MENU SUMIMAIYcciiiaiiiiiiiiiiieae e rieiieee e e e e ribbeee e e e e e s s arnbreseeeaeeeaaanes 104
Cross Tabulation TOOIDAr SUMMAIY........oooiiiiiiiiiaa e e e 105
Cross Tabulation KEYS SUMMAIYcciiiiiiiiiiiiieiaa et e e e sibieee e e e e e s s ssbaeeeeeaeeeaaanes 106
CSPIO LABNQUAGEcciiiiiiiiiii ittt e e e e e e e e e e e e e e e e e e e 107
INtroduction t0 CSPrO LANQUAGEuuuiieeeiiiciiiiiieee e e e s siitee e e e e s e s sssneeee e e e e s s snsenneeeeeessssnnrnneees 107
LanQUAQE EIBMENTS ...ttt ettt e e ettt e e e e e e s bbb b e e e e e e e e e annraneeas 108
Declarations and PrOCEAUIESciiii ittt a e e 108

(D]=Tod FoT = 1110] LS TP TP 108

EVEINES .ttt 109

Order of Executing Data ENtry EVENTScooiiiiiiiiiieaeiiiicece e 109

Order of Executing Batch Edit EVENTS.......c.ccooiiiiiiiiiieeiiceeee e 111
Statements and FUNCHONSoiuuiiiiiiiee e 112
SEALEMENLS .t e e e e e s e e e e s 112

T gV 1 o] o PSPPSR 112
DEIMILEIS .ttt e e s bt e e st e e enbb e e e e nnbaeeesnneee 112
1070] 1011 41T o | K= F PP T PP PRPPRRPPON 113
Variables and CONSLANTScoiiiiiiiiiiiiie e e e e e e s bbb aeeeaaaeeas 113
NUMENC VANIADIES ...t 113

SHNG VarAbIES ...t 114
NUIMEIIC ATTAYS .eeeeeeeeeiiitttee et e e e e e ettt et e e e e e s ettt et e e e e e e s e aabbbeeeeaaeesaabbebeeeaaaesaansbnneeeaens 114
AlPNANUMETIC AFTAYS ...ttt ettt ettt e e e e e ettt r e e e e e e e e snbbaee e e e e e e e e snbaeaeeeaens 115
RESEIVEA WOIAS ..ottt e e e e e e e e e eanbaeeee e s 115

(D 1e= W 1 =] 0 PP P PP TPPPPPPI 116

I 4T3 =T) SR 116

YU o1 od] PR 117
NUMDBDEIS ...ttt st e e et e e e s nnbre e e e nneee 118

QL= RS T 1RSSR 118

D q 0 (=TT [1 1S 119

o o] (STS1S (o] 1 TP TP 119
SUDSHING EXPrESSIONSiiiiiieiiiie ettt e e e e e e et e e e e e e e e e e aneeees 119
SPECIAL VAIUEBS ...ttt e e e e e 120
OPEIALOIS ... 121

(O 01T =1 (0] £ 7PN 121

IN OPEIALON ... e 121

If and ONly If OPErator K= ... s e e e e s 122
OPEratOr PrECEUENCE ... e et e e e e e e s e e r e e e e e e e anneees 123

ANA/OF TrUuth TADIE ... 123

Il ettt et e e e e bb et e e abr e e e nnneee s 123
EXIEINAI FlES ..ot 123
Sharing EXternal FileS ...t 124
WOrKing STOrage File..........ooi e 124
MESSAGE FlE ... 125
YLz LT o ST PP TP UPRRRTN 126
USING LOOKUP FIIES ...ttt e e e e e e e e e e e e senaen e 126
Statements and FUNCLIONSoiiiiiiiii e e e e e e ae e e e e e e s aanes 126
Alphabetical List of Statements and FUNCHONSccccoiiiiiiiiiiiee e 126
Declaration StAtEMENTScoiiiiiie e sb e e e b e e e saaeee s 128
YYo=] = (] 1 1= o | S 128

AITaY STAEMENT ..o 129

LU Te (o g IS) F=1 (=] 4 L= 130

UL [T eRS] =Y (=11 4[] oL A 131
(T 0 o Tl Y T o | 132
[o T A=Y o | T 132
POSIPIOC EVENT ..ottt 133
T) =1 (=] 1 1= | AT 133
Set AtNDULES STALEMEBNT i e e e e e e et e e e e e e s et e e e eaaa s 134
Assignment and Recode StatemMENtSooooiiiiiiiiiiii e 135
ASSIGNMENT SALEMENTeiiiiiiiiiiiii et e e e e e e sbaeeeeeaeas 135
Recode (BOX) STAtEMENT......cuiiiiiiiciiiiiiee e e e e e e s e e e e e e s e snrrereeees 135
] 01U (= o 1o o P 138
Program Control StAtEMENTSuiiiieiiiiciieiice e e e s s e e e s e e e e e e e ennreeeees 139
[0 T3 = L (=] 0 =Y o) N 139
(L) =1 (=] 4 1<) 140
[l G £ (=] 1 =] 0| N 141
LRS] =1 (=] £ A=) 0| S 142
NV 11 LIS = 1A= 1 =T L 142
Data Entry Statements and FUNCLONS...........ooiiiiiiiiiiiiie e 143
ACCEPE FUNCHION .ottt e e e e et e e e e e e e e e sanbaeeeeeaaas 143
P \VZ= L g[S £ 1 (=] £ A1) | S 144
[D1<] 0 gLoTo [N =L U] T2 110 o 144
Lo [T i gTo) (<IN LU [T 1o o [145
[0 | LY IS £=1 (=T 4 L= 0 145
ENAQroup StatemMENtvieiiiee e e e 146
[g1 LT O] = 10T 1 1= | N 146
(=Yg Lo) (<IN U [T 1 o] o 1 147
N1 (o 1o S Y= o SR 147
NOINPUL STAEEIMENT ... e e e e e e e eea s 148
(@] 4] {0 1o18 F V=T 1 | P 148
(g1 Lo] (Y U] g 11 (0] o 149
[Tl AL (TN £ 1 (=] A 11T £ 149
SEICASE FUNCHION.....cciee et e e et e e e et e e e e a e e s et e e eeraa s 150
] OS] = U (= 1 = o | PR 150
ViISUAIVAIUE FUNCHION ..uuuii et e et e e e e e e ee s bbb s e e e e e e e eeraanas 151
BatCh Edit STAtEMENTS ..uvuueii i e e e e e et e e e e s s e e a bbb e e e e s e e e reabaaas 152
S] OF= TSI v= 111 1 0= | PR 152
0] ¢S] = =] 1= o) 152
N TUT g [T g (o3 U] T 1Y 152
(41 gTodeTo (ST =101 o3 1To] o [T 152
EXP FUNCHION ...ttt ettt e e e e e e e e e e e e annbneeeeaeas 153
LU T3 (o] o 154
LOG FUNCLION ...ttt ettt e e e e e st e e e e e e e annnbreeeeaeas 154
(2= 10T (o] I =IU] 011 170 o 154
ST o I VT ox 1o o T 155
Yo | U1 T 1o) o PR 155
S (Lo T LT 1T 1 PSR 156
(0] 191 o= LT =11] o3 1T o TS PR 156
(Of0] 0 [o7=\ f =l U] o[£ [0 o 156
=0 1 U o3 1o o T 157
FIlENamME FUNCHON. .. .o et e e e e et e e et e e e e e e s eaa e eeeaas 158
GEthUTTEI FUNCLION ...ceve et e e e e e e e et e e e e e e e s a e e e e baaa s 158
(T oo 110 I 0] o Tox 1o T o LT TP T URRPPPI 159
Y/ E= L (=) A U] T2 10] 159
[0TSR 1V | To3 1] o NP 160
(o011 nF= Tl 10 [o2 1[0 o [P 161

S g o JN L1 o3 1T o PR 162

B INo a1 TgaY o T=T o VT o3 1o o 163

Multiple OCCUITENCE FUNCHIONSciiiieeiiiiiiiiii e e e e e e et e e e e e s s e e e e e s s s e e e e e e e e snnneeees 163
Y=Y = Lo T T o 1o o P 163

(L0 10T o1 =0T T 10 o 164

(LU fo Yot o3t W] [ox 1 o] o SN 165

(1Y = (= U U T o 165

INSErt FUNCLION ..., 166

= U 3 1 T o 167

YT U o3 1 o] o F 168
NOCCUIS FUNCLION ...eeiiiiiiie ettt sttt e e s nbbe e e e b e e e nneee 168
SOCCUIS FUNCHION ...ttt ettt et e e e st e e s sbee e e e nneee 169

Yo S U] o1 o] PRSP PR 169

SUM FUNCHON 1.ttt et e e ettt s bt e e e snbbe e e s snbre e e e nneee 170

TOLOCC FUNCHION. ...ttt ettt e st e e e s b e e e s nabeeeeea 170
GENETAl FUNCLIONS ...ttt sttt e et e e st e e e nbbe e e e enres 171

(O 1= T 0 T 1] o T 171

Errmsg (Display) FUNCHONooiiiiiiiiiii et 171

SPECIAl FUNCHON.eeiiiiii et e e e e e 174
SYSAALE FUNCLION ...ttt e e e e et be e e e e e e e e e aneee s 174
)Y &S] o L= U 1 0 0 o 1o o PP URPTP 175
SYSHME FUNCHON......eeiiiiiii e e e et e e e e e e e aneee e 175

WWHIEE FUNCLION ...ttt ettt e e st e e e bt e e e snneeeas 176
EXternal File FUNCHONSoooiiiiiie it e e 177
ClOSE FUNCHION ...ttt ettt et e e e st e e s sbee e e e nneee 177
DEICASE FUNCHON ...eiiiiiiiiiiiiiiee sttt st e e s b e e e 178

FIN FUNCLION Lottt e e e e 178

KBY FUNCHION ...ttt ettt ettt e e e e e et e e e e e e e aannbaeeeeaeas 179
(0T Vo o= 1T I =1 1o 1o o 179

[0 Tot= 1 (=N U od 1o o PO 180

(O] o<1 ol =T o Tox 1o o DT PP UPPTP 181

R L 2NV U o i 1 o] o 181
Writecase FUNCLION ... 182

il S 183
1o Y/ 0T TS 183
Data Entry Application File ((ENT) ...t 184
Batch Edit Application File ((BCH)coiiiiiiiee e 184
Cross Tabulation Application File (. XTB) ...ccuii i 184
Data DictioNary File ((DCF)coii ittt ettt e e e e et be e e e e e e e ennreneeas 184
FOIM FIlE ((FIMIF) ettt e e e e e ettt e e e e e e s bbbt e e e e e e e e e annreneeas 185
Edit Order File (LORD).. ... ittt e e et e e e e e e s bbb e e e e e e e e e annraaeeas 185
Table SPecifiCations File (. XTS) ... e e s e e s s s e e e e e s s s e e e e e e s e nnnranereeeees 185
[Yo T L= 2 . SRS 186
MESSAGES FilE ((IMGI)... .t e e e e e st r e e e e e s e s e e e e e e e s e snnrnneees 186
L (=11 o TS R 1 L= (8 SRS 186
Program Information File ((PFF)euiiiiiee ettt e e e 186
TADIES Fle ((TBWV) .ttt ettt e e e e e ettt e e e e e e e s san bt e e e e e e e e e eannnbbeeeaaaeaas 187
Area Names File (LANM) ... et e e e e e et e e e e e e e e e annbeneeas 187
= T 1 Lo 1YY = SRS PRRRURRR 188
Map Data File ((IMDIF).. ...ttt e et e e e e e e s bbb e e e e e e e e e ennnaneeas 188

vii

viii

CSPro Users Guide

Basic Concepts

Introduction to CSPro

CSPro is a tool for entering, editing, and tabulating data from surveys and censuses. It uses data
dictionaries to provide a common description of each data file used.

If you have never used CSPro before, you can refer to the Getting Started Guide. This contains a
tutorial that gives you an overview of CSPro’s capabilities.

This section contains the following information:

CSPro Concepts
Data Dictionaries
Data Entry applications
Batch Edit applications
Cross Tabulation applications
Trees and Windows

How to ...
Create a new application
Create a new Data Dictionary
Create a new Data Entry application
Create a new Batch Edit application
Create a new Cross Tabulation application

Open an existing application
Move around applications
Save an application

Close an application

Insert a file into an application
Drop a file from an application
Define dictionary type

Print all or part of a file
Change the print page setup
Run a CSPro tool

Change the view
Change windows
Get Help

Summaries
Menu
Toolbar

CSPro Concepts

Data Dictionaries

A Data Dictionary describes the organization of a data file. This description is used by all other
modules of CSPro in order to access and use the data file for which this description applies.

A Data Dictionary allows you to give text labels for all levels, records, items, and value sets in the
file. It allows you to describe how each kind of record in the file is organized, how the records are
organized into questionnaires, and the characteristics of each item in the record.

You will need to a create a data dictionary for each type of data file you want to use in CSPro.

A Data Dictionary is used to give a description or picture of how data are (or will be) stored in the
computer. It allows you to provide meaningful names for the data items and to define
characteristics such as whether the data item is made up of numbers or letters, how many
characters or digits there are in a data item, and whether a data item has an assumed decimal
point. The Data Dictionary also allows you to define the overall structure of a data file.

CSPro requires that a Data Dictionary be created for each different file being used.

The Data Dictionary facilitates communication. It provides a means of documenting a file
description in a single place. Anyone needing information about any aspect of a data file can find
it in the Data Dictionary.

Data Entry Applications

A Data Entry application contains a set of forms (screens) and logic which a data entry operator
uses to key data to a disk file. Data entry applications can be used to add new data and to
modify existing data.

You can have the following run-time features in your data entry application:

* Add new cases (questionnaires) or retrieve and modify existing cases
e Unlimited number of forms (screens)

¢ Forms may be any size; CSEntry will scroll as necessary

¢ Forms may contain fields from different physical records

¢ Physical records may be split among different forms

¢ Forms may contain individual fields or rosters

¢ Edit_Logic can be executed and messages displayed after any field is entered
* Consistency checks and skip patterns of unlimited complexity

e Multiple look-up files

* Cases indexed to avoid duplication and for easy retrieval

* Operator statistics

You use CSPro to develop the data entry application. You use CSEntry to run the data entry
application. For small surveys and for testing applications, you can run CSEntry directly from
CSPro, on the same computer. For large surveys and censuses, which require a production
environment, you can transfer the application files to other computers and run CSEntry on them.

Data entry applications consist of the following files:

Application file

[| '
| Logic file | | Mezzage file | : Help file
I

| [rata Dictionary file | Other
[rata Dictionary files

* Application file (.ent). This specifies all other files contained in the application and includes
other application information.

* Forms file (.fmf). There is usually one forms file per application, but there may be multiple
forms files. Each forms file contains one Data Dictionary file (.dcf) which represents the
primary data file that is being created or modified.

* Logic file (.app) contains CSPro language statements.

* Message file (.mgf),optional, contains text for messages displayed during data entry.

¢ Help file (.hpf), optional, contains text for help screens displayed during data entry. Use of
this file in the data entry application is not yet supported.

e Other Data Dictionary files (.dcf), optional, represent secondary data files (such as lookup
files) which are read and/or written to during data entry.

See also: Creating a New Data Entry Application

Batch Editing Applications

A Batch Editing application contains logic which you can apply against one set of files to
produce another set of files and reports. Batch editing applications can be used to gather
information about a data file

A Data Entry application contains a set of forms (screens) and logic which a data entry operator
uses to key data to a disk file. Data entry applications can be used to add new data and to
modify existing data.

You can have the following run-time features in your batch editing application:

Write edits (logic) using powerful CSPro language

Validate individual data items

Test consistency between items

Check case/questionnaire structure

Modify data values

Use arrays for hot deck or cold deck imputation

Generate imputation statistics

Generate edit reports automatically or create a customized report
Create additional variables

Read/write to multiple look-up files

You use CSPro to develop the batch editing application. You use CSBatch to run the application.
For small surveys and for testing applications, you can run CSBatch directly from CSPro, on the
same computer. For large surveys and censuses, which require a production environment, you
can transfer the application files to other computers and run CSBatch on them.

Batch edit applications consist of the following files:

Application file

| | |
| Order file | | Logic file | | Mezsage file |

| [rata Dictionany filel Other
[rata Dictionary files

¢ Application file (.bch) specifies all other files contained in the application and includes other
application information.

Order file (.ord) specifies the order in which logic in the application is executed. There is
usually one order file per application, but there may be multiple order files. Each order file
contains one Data Dictionary file (.dcf) which represents the primary data file that is being
read and/or written.

Logic file (.app) contains CSPro language statements.

¢ Message file (.mgf), optional, contains text for messages displayed on the output listing.
Other Data Dictionary files (.dcf), optional, represent secondary data files (such as lookup
files) which are read and/or written to during the batch run.

See also: Creating a New Batch Edit Application

Cross Tabulation Applications

A Cross Tabulation application contains a set of table specifications and a data dictionary
describing a data file to be tabulated. When you create your application, you can use an existing
data dictionary or you may create one as you create the application.

In a Cross Tabulation application, you can:

Cross-tabulate up to four variables.

Select the universe of tabulation.

Tabulate values and weights.

Tabulate counts and/or percents.

Save tabulations in several formats.

Copy tables to spreadsheets or word-processing documents.
Produce tables by geographic area.

Map results by geographic area.

Cross Tabulation applications consist of the following files:

Application file

Crozs T abulation
specification file

\—‘ [ata dictionary file

» Cross Tabulation Application file (.XTB) specifies all other files contained in the application
and includes other application information.

* Table Specifications file (.XTS) contains variable names and other parameters which define
the tables in the application.

» Data dictionary file (.DCF) contains the physical format of the data file(s) to tabulate.

See also: Creating a New Cross Tabulation Application

Trees and Windows

Each time you open or create an application or a file, it is added to the Files tree. When you
close the application or file, it is removed from the Files tree. If you have an application open, the
Files tree will show you the files included in the application and their relationships with one
another.

You may Insert or Drop a file from a data entry application. This is necessary if you plan to use
Look-up files or Multiple forms files.

Tips

* Use Ctrl+T to see the full file names of the files you have open.
* Double-click on the Files tree to switch the frame on the right side of the screen.

Reconciling Dictionary Changes

Whenever you make changes to a Data Dictionary, CSPro must reconcile the changes in
applications which use the dictionary. If the application is open when you make the change,
CSPro automatically makes the change in your application. If the application is not open, CSPro
will attempt to make any changes the next time you open the application.

Under some circumstances CSPro will ask you to assist in the reconciliation process. You may
asked whether you want to delete item from a form or rename the item, that is, use an item with a
different dictionary name.

To rename the item, select rename and then choose the new item name from the list presented.

To delete the item, select delete.

How to ...

Create applications or files

Create a New Application

1 Click on the toolbar; or from the File menu, select New; or press Ctrl+N.
2 Select the type of application or file you want to create.

3 In the panels which follow, enter the names of the files you want to create.
Name Object

1 Select the type of application or file you want to create:

Data Entry Application —to create a data entry application
Batch Edit Application — to create an edit application
CrossTab Application —to create a cross-tabulation application
Data Dictionary File — to create an external dictionary

Forms File — to create a forms file outside an application

2 Enter the name of the file you want to create. The file name must not already exist.

3 Select the folder where the object is to be stored. You can press the Browse button to locate
a folder.

Select Form File
Give the name of the primary form file for this application. Press the Browse button to locate
an existing form file. If the form file already exists, it will be used. If the form file does not exist,
it will be created.

Select Data Dictionary

Give the name of the primary dictionary file for this object. If the dictionary file already exists, it
will be used. If the dictionary file does not exist, it will be created.

Summary

Verify that the list of files created or used is correct. If the list is correct, you may continue with

the next step. If the list is incorrect, you may return to an earlier step to make any necessary
corrections before proceeding.

Create a New Data Dictionary

Follow the steps below to create a new dictionary:

1 Click on the toolbar; or from the File menu, select New; or press Ctrl+N.

2 Select ® "Data Dictionary File" from the Object: listing.

3 Provide a name for the new dictionary—note you need not provide the dictionary extension
(.dcf), it will be automatically appended to the name.

4 Press Next> to advance to the Summary Screen and review your choices.

5 If everything looks ok, press Finish to complete the operation.

Tips

* If you are creating a dictionary to describe an existing data file, you may want to use absolute
positioning, in the event there are any "holes" in the data file(s). Or, if you only want to use a
subset of the data file's information, using absolute positioning allows you to define only those
data items of interest to you.

¢ If you are defining a dictionary for a new data file, you should be in relative mode, as this does
not allow "holes" in your data.

Create a New Data Entry Application

To perform data entry, you will need a data dictionary to describe the data file. If you have an
IMPS or ISSA data dictionary, you should convert it to a CSPro data dictionary before you create
a new data entry application. If you already have a CSPro data dictionary for the file, you can
specify this dictionary when you create a new data entry application.

1 If you have an IMPS or ISSA data dictionary, convert it to CSPro.

2 Click on the toolbar, or from the File menu, select New.

3 Select Data Entry Application.

4 Enter the file name for the application.

5 Enter the name of, or select, the folder where the application will be stored. Click on Next.

6 Enter the file name for the data entry forms, or click on Next to accept the default name. If
you converted an ISSA dictionary to a form file, enter the name of the file you created, then

click on Next.

7 If you already have a CSPro data dictionary, select its file name. If not, enter a new name and
the system will create a new dictionary for you. Click on Next.

8 You will be given a list of the files that will be created or used. If the list is correct, press
Finish. Otherwise, press Back to make changes.

9 If you are using an existing CSPro data dictionary, you may begin creating data entry forms. If

you are creating a new CSPro data dictionary, you will need to enter information into the
dictionary about records, items, and values before you can create forms.

Create a New Batch Edit Application

To perform batch editing, you will need a data dictionary to describe the data file. If you have an
IMPS or ISSA data dictionary, you should convert it to a CSPro data dictionary before you create
a new data entry application. If you already have a CSPro data dictionary for the file, you can
specify this dictionary when you create a new data entry application.

1 If you have an IMPS or ISSA data dictionary, convert it to CSPro.

2 Click on the toolbar, or from the File menu, select New.

3 Select Batch Edit Application.

4 Enter the file name for the application.

5 Enter the name of, or select, the folder where the application will be stored. Click on Next.

6 If you already have a CSPro data dictionary, select its file name. If not, enter a new name and
the system will create a new dictionary for you. Click on Next.

7 You will be given a list of the files that will be created or used. If the list is correct, press
Finish. Otherwise, press Back to make changes.

8 If you are using an existing CSPro data dictionary, you may begin creating batch edit
procedures. If you are creating a new CSPro data dictionary, you will need to enter
information into the dictionary about records, items, and values before you can create forms.

Create a New Cross Tabulation Application

To perform cross-tabulations, you will need a data file, and a data dictionary to describe the file.
If you do not have a data dictionary, you will need a written description of the data file structure
and organization. You can create the CSPro data dictionary as you create the new Cross
Tabulation application. If you have an IMPS or ISSA data dictionary, you should convert it to a
CSPro data dictionary before you create a new Cross Tabulation application. If you already have
a CSPro data dictionary for the file, you can specify this dictionary when you create the new
Cross Tabulation application.

1 If you have an IMPS or ISSA data dictionary, convert it to CSPro.

2 Click on the toolbar, or from the File menu, select New.

3 Select CrossTab Application.

4 Enter the file name for the application.

5 Enter the name of, or select, the folder where the application will be stored. Press Next.

6 If you already have a CSPro data dictionary, select its file name. If not, enter a new name and
the system will create a new dictionary for you. Click on Next.

7 You will be given a list of the files that will be created or used. If the list is correct, press
Finish. Otherwise, press Back to make changes.

8 If you are using an existing CSPro data dictionary, you may now start creating tables. If you

are creating a new CSPro data dictionary, you will need to enter information into the dictionary
about records, items, and values before you can create tables.

Open applications or files
Open an Existing Application

1 Click on the toolbar; or from the File menu, select Open; or press Ctrl+O.

2 Select from the Files of type: at the bottom of the dialog box. In CSPro you can open either an
application or a file.

3 Select the name of the file you want to open.

Notes:
* The application or file will be added to the Files tree

¢ Any other files belonging to the application or file will also be opened and added to the
appropriate trees.

* You may open a data dictionary and make changes to it, even if it already belongs to an
application. Be aware that if you later open an application to which it belongs, CSPro will
automatically make necessary adjustments in other files. For example, if you delete or rename
a dictionary item, then later open an application which contains the data dictionary, any
corresponding fields on forms will be deleted.

¢ You may open a forms file and make changes to it, even if it already belongs to an application.
However, you will not have access to the associated Logic file and you will not be able to run it.

* Any changes you make to applications and files are not made permanent until you save what
you opened.

Move around applications

Moving Around Applications

CSPro shows trees on the left side of the screen and windows on the right side.

Windows

The window on the right side of the screen allows you modify the contents of a dictionary or
application. Each different window has different functions associated with it. That is, you will see
a different menu and toolbar with each different window.

Part of the toolbar to the left of the Help button shown below allows you to switch between
different types of windows: Dictionary, Forms Design, Batch Editing, and Cross Tabulation.

EXaV a1k

To change the contents on the right side of the screen press the button of the type of window you
want to view. If there is more than one window of that type, the most recent one viewed will be
displayed.

If you need to select a particular window, from the Window menu, select the file name you want
to view.

Trees

The Files tree is always present. This tree shows you what applications are currently open. If an
application is open, the Files tree shows all the files that belong to that application.

CSPro always shows a tree on the left side of the screen. There are four kinds of trees in CSPro:

Files tree shows all the applications that are open, and the files they contain.
Dictionaries tree shows all the dictionaries that are open, and their contents.

Forms tree shows all the form specifications that are open, and their forms and fields.
Edits tree shows all the edits specifications that are open, and the order of edits.
Tables tree shows all the table specifications that are open, and their contents.

The Files tree is always available. The other four trees are available only if appropriate
applications are open.

|
j Files |@ Diu:tsl @ F-:urmsl & Editsl Tablesl

To change the tree on the left side, click the tab of the tree you want to see.

Save and close applications

Save an Application

Click on the toolbar; or from the File menu, select Save; or press Ctrl+S.

The file associated with the current frame (right side of the screen) will be saved. If that file
belongs to an application that is open, the entire application will be saved. If the file belongs to
more than one application, CSPro will ask you which one you want to save.

1 Select the file or files you wish to close or save.
2 Click on OK.

Tips
¢ To choose all of the files, click on the Select All button.
¢ To choose several files, hold down the Ctrl key and click on files you wish to select.

See also: Open an Application or File, CSPro applications and files, Data Entry Application Files,
Cross Tabulation Application Files

Close an Application

From the File menu, select Close.

The file associated with the current frame (right side of the screen) will be closed. If that file
belongs to an application that is open, the entire application will be closed. If the file belongs to

more than one application, CSPro will ask you which one you want to close.

1 Select the file or files you wish to close or save.
2 Click on OK.

Tips
* To choose all of the files, click on the Select All button.
* To choose several files, hold down the Ctrl key and click on files you wish to select.

See also: Open an Application or File, CSPro applications and files, Data Entry Application Files,
Cross Tabulation Application Files

10

Insert or drop files from applications

Insert a File in an Application

1 Click on the Files tab to bring up the Files tree.

2 From the File menu, select Insert File or right click on the application file and select Insert
File.

3 Select the type of file to be inserted.

4 Select the name of the file to be inserted.

Note: You may add dictionaries and forms files to a data entry application. Additional dictionaries
represent data files used by the application, such as look-up files. Multiple forms files are
sometimes used in advanced applications. You may not add files to Cross Tabulation
applications.

Drop a File from an Application

1 Click on the Files tab to bring up the Files tree.
2 From the File menu, select Drop.

3 Select the type of file to be dropped.

4 Select the name of the file to be dropped.

Define Dictionary Type

Every dictionary associated with an application has a type value which indicates how it is being
used. For the primary dictionary (i.e., the one upon which your application was created), this will
be your main dictionary. Other dictionaries (ones that are inserted either directly or secondarily
via a forms file), can have additional properties, as explained below.

To see your dictionary's type, go to the Files tab, right-click on the dictionary in question, and
select "Dict Type." You will then see the following four choices (which may or may not be active,
depending on their use):

Main
This is the principal dictionary upon which the application was built. You can not give
the dictionary another status, it will always be the primary dictionary for the
application.

External
When you add a dictionary to an application, its type can either be external or
working. If it is an external dictionary, it must have an associated data file. When
external dictionary variables are used in an application, their default values will be
Not Applicable.

Working
When you add a dictionary to an application, its type can either be external or
working. If it is a working dictionary, it does not need an associated data file. When
working dictionary variables are used in an application, their default values will be
blank (if the variable type is alphanumeric) or zero (if the variable type is numeric).

Special Output

11

Provided for backward compatibility with ISSA Batch Edit Applications. Only non-
primary dictionaries used in Batch Edit Applications can have a "special output” type.
Refer to the ISSA Manual for further instruction.

Print

Print all or part of a Document

To print an entire document ...

Click on the toolbar; or from the File menu, select Print; or press Ctrl+P.

To print part of adocument ...

1 Select the text you want to print.

2 Click on the toolbar; or from the File menu, select Print; or press Ctrl+P.

To change printer font size ...

1 Click on the toolbar; from the Options menu, select Printer Font Size.
2 Select the font size from the dialog box.

Tip
O CSPro will remember your font size setting for the next time you run the Text Viewer.

To preview the printing...

Click on the tool bar; or from the File menu, select Print Preview.

Change the Print Page Setup

To change the page headers, footers, or margins ...

1 Click on the toolbar or from the File menu, select Page Setup.
2 In the page setup dialog box make changes to the page headers, footers, and margins.

Header
Edit the text to be placed at the top left, top center, and top right of each page. You can use
the Date, Time, File, and Page buttons to insert the current date, time, file name, and page
number.

Footer
Edit the text to be placed at the bottom left, bottom center, and bottom right of each page. You
can use the Date, Time, File, and Page buttons to insert the current date, time, file name, and
page number.

12

Margins
Change the size of the top, bottom, left and right margins. Your printer may not allow margins
below certain values.

Tip

O The headers, footers, and margins you specify will remain in effect until you change
them.

To change the page orientation or size ...

3 From the File menu, select Print Setup.
4 In the print setup dialog box make changes to orientation (portrait or landscape) and paper
size.

Run CSPro tools

Run a CSPro Tool
From the Tools menu, select one of the tools listed below you want to run.

Text Viewer
This tool allows you to examine, but not change, any text file. The file can be of any length and
may contain individual records up to 32,000 characters wide.

Table Viewer
This tool allows you to examine, but not change, the contents of any CSPro tables file. A
tables file (extension .tbw) contains the results of CSPro tabulations. You can also copy, save,
or print all or parts of the tables in the file.

Map Viewer
This tool allows you to create and manipulate thematic maps of data. Thematic maps can be
created as part of CSPro cross tabulations.

Retrieve Tables
This tool allows you retrieve tables, maps, and other documents from a database of files. lItis
very useful as a data dissemination tool.

Tabulate Frequencies

This tool allows you to produce frequency distributions of all or some of the variables in a data
file. You simply select the variables (value sets) you want to tabulate and provide the name of
the data file. More than one data file can be tabulated.

Sort Data
This tool allows you to sort a data file by questionnaires using the identification fields.

Export Data

This tool allows you to export data records or parts of data records to tab or comma delimited
files. These files can be imported into spreadsheets or databases. It also allows you to export
data records or parts of records to data files for which descriptions are created for SPSS, SAS, or
STATA.

13

Reformat Data

This tool allows you to reformat data using an input and output data dictionary. Fields with
corresponding names are copied from the input to output file. This is useful for reorganizing data
records or lengthening data items.

Compare Data
This tool allows you to compare the contents of two data files and identify the differences. The
data files must have the same structure, that is, they must be described by the same CSPro
dictionary.

Concatenate Data
This tool allows you to concatenate (that is, join end-to-end) two or more CSPro data (or other
text-based) files. You do not need a dictionary for this utility, you only need to know the name
and location of the files you wish to combine.

Convert Dictionary

This tool converts ISSA or IMPS data dictionaries to CSPro data dictionaries. It converts both

IMPS 3.1 and IMPS 4.1 data dictionaries. It also converts ISSA data dictionaries to CSPro data

dictionaries and data entry form files.

Convert Shape to Map

This tools converts ESRI ArcView or Arcinfo polygon shape files to CSPro map files. Map files
can be thinned to reduce the number of points in the polygons.

There is a user's guide for each of the tools.

Change view and windows
Change the View

Names in Tree
To toggle between labels and names in trees ...
From the View menu, select Names in Trees, or press Ctrl+T. A check mark appears next to

the Names in Trees menu item when names are displayed instead of labels. The setting of
Names in Trees affects ALL the trees.

Full Screen
To toggle between trees on left and full screen ...
From the View menu, select Full Screen, or press Ctrl+U. A check mark appears next to the

Full Screen menu item when the display is in full screen mode. The setting of Full Screen affects
ALL applications.

Change Windows

Cascade

14

Use this command to arrange multiple opened windows in an overlapping fashion.

Tile Top-to-Bottom
Use this command to arrange multiple opened windows one above the other in a non-
overlapping fashion.

Tile Side-by-Side
Use this command to arrange multiple opened windows one beside the other in a non-
overlapping fashion.

1.2, ..
View displays a list of currently open files at the bottom of the Window menu. A check mark

appears in front of the name of the file in the active window. Activate a window by choosing
the name of its file from this list.

Get help

Get Help

Click on the toolbar; or from the Help menu, select Help Topics; or press F1.

Most dialog boxes have a Help button.

To contact us about problems ...

Technical Assistance Staff
International Programs Center
U.S. Census Bureau
Washington, DC 20233-8860

Phone: 1 (301) 763-1451
Fax: 1 (301) 457-3033
E-Mail: CSPro@lists.census.gov
Visit: www.census.gov/ipc/www/cspro
When you contact us, please indicate the version number of the software you are using. You

can obtain the version number from the top of the About box. From the Help menu, select
About.

Summaries

CSPro Menu Summary

The CSPro menu is displayed across the top of the window. It appears only when CSPro is
opened without any applications or files open. When applications are open, the menu
corresponding to the contents of the right-hand window appears.

Files
New Create a new application.

15

mailto:CSPro@lists.census.gov
http://www.census.gov/ipc/www/cspro

Open Open an existing application.

Tools
Text Viewer View text or data files.
Table Viewer View CSPro tables.
Map Viewer View CSPro thematic maps.
Retrieve Tables Retrieve tables from a data set.
Tabulate Frequencies Tabulate frequency distributions for file contents.
Sort Data Sort cases based on ids.
Export Data Export data in various formats.
Reformat Data Reformat data using two dictionaries.
Compare Data Compare contents of two similar data files.
Concatenate Data Join text files one after the other.
Convert Dictionary Convert an ISSA or IMPS dictionary to CSPro.
Convert Shape to Map Convert an ESRI shape file to CSPro map file.
Help
Help Topics Get help on current application.
About Get information about the software.

CSPro Toolbar Summary

The CSPro toolbar is displayed across the top of the window, below the menu bar. It provides
guick mouse access to many features used in CSPro.

Click To

Create a new application.
Open an existing application.

Get help.

The CSPro toolbar only appears when CSPro is opened without specifying an application or file.
When applications or files are open, the toolbar corresponding to the contents of the right-hand
screen appears.

Data Dictionary

Introduction to Data Dictionaries

The Data Dictionary module allows you to describe the structure of data files that are used by
other parts of CSPro. It also describes your census or survey questionnaire.

This section contains the following information:

Data Dictionary Concepts
Dictionaries
Questionnaires and File Organization
Levels
Records
ltems

16

Values Sets

Strategies
Creating a Dictionary for a New File
Creating a Dictionary for an Existing File
Converting ISSA or IMPS Dictionaries

How to ...
Move Around a Dictionary
View the Dictionary Layout
Add Dictionary Elements
Insert Dictionary Elements
Modify Dictionary Elements
Undo and Redo Changes
Select Several Dictionary Elements
Move Dictionary Elements Around
Convert Items to Subitems
Select Relative or Absolute Positioning
Find Dictionary Elements
Document Dictionary Elements

Summaries
Menu
Toolbar
Keys

Dictionary Concepts

Dictionary

Dictionaries

A Data Dictionary gives a description of how data are stored in a file. It allows you to define:

e The overall structure of a data file.

¢ Meaningful names for records, items, and values.
e Position in the data record.

e The type of data in a item (numbers or text).

e Length of an item.

e The number decimal places.

¢ Valid values or ranges of values.

e Other documentation.

This description is used by other modules of CSPro to correctly read and write data to files.

Labels

17

Labels are descriptive text used to identify the dictionary and its elements. Labels are required
for the dictionary and most of its elements.

e Labels can contain any printable character and spaces.
e Labels can be up to 255 characters long.
Tips

e The dictionary tree displays either the labels or names of dictionary elements. You can press
Ctrl+T or from the View menu, select Names in Trees at any time to toggle between labels
and names.

Names

Names identify the dictionary and its elements when they are referenced in CSPro procedures.
Names are required for the dictionary and most of its elements.

o Names consist of upper case letters (A-Z), digits (0-9), and embedded underlines (_). The first
character must be a letter. The last character cannot be an underline ().

e Names can be 1 to 32 characters long.

e Names cannot be CSPro reserved words.

e Names cannot be duplicated within a dictionary. However, the same name can be used in
different dictionaries.

Examples:
SEX
RELATIONSHIP
MOTHER_ALIVE
Q102_AGE_CHILD

Tips
e The dictionary tree displays either the labels or names of dictionary elements. You can press

Ctrl+T or from the View menu, select Names in Trees at any time to toggle between labels
and names.

Notes

Notes document the dictionary and its elements. The dictionary and any of its elements can have
notes.

Notes can contain any printable character and spaces.
Notes can be up to 65,000 characters long.

To add, modify, or delete notes ...

Select the dictionary element in the dictionary window that contains or will contain the note.

Press , or from the Edit menu, select Notes, or press Ctrl+D.

Tips

18

e You can use the Enter key to end a paragraph and begin a new one within the note.

e You can use Ctrl+X, Ctrl+C, and Ctrl+V to cut, copy, and paste text in the note.

Questionnaires and File Organization

Questionnaires

A questionnaire is a set of questions relating to the same unit of observation (such as a
household, person, or factory). The body of a questionnaire is often divided into sections, with
each section asking a related set of questions. In the dictionary these sections would normally be
grouped into a record. The following are sample questionnaire structures.

Example 1: In a typical housing and population census, a questionnaire would contain the
following records:

e one housing record
e multiple (zero or more) population records
Normally there would be one or more population records, dependent on the number of people in

the household. However, if you allowed vacant housing units, then those questionnaires would
not have any corresponding population records.

Example 2: A questionnaire designed for an agricultural census might consist of the following
records:

¢ one farm household record
e multiple (one or more) crop records
e multiple (one or more) farm worker records

Example 3: Finally, a questionnaire for a reproductive health survey might consist of the
following records:

e one record for data on the woman

e multiple (zero or more) children-ever-born records

e one contraceptive use record

e one immunization record

In the Data Dictionary, records with the same questionnaire identification codes (i.e.,

Questionnaire Ids) constitute a questionnaire. In a data file, if a group of questionnaire Ids
uniquely identify the unit under observation, then those records make up one questionnaire.

Note that in some cases, one record constitutes a questionnaire. For example, a student roster
might consist of a record for each student. The student identification number could serve as the
guestionnaire identification. The type of data file produced from this dictionary is known as a flat
data file.

19

Data File Organization

All data files used by CSPro must be ASCII text files (i.e., you must be able to view them in a text
editor—they can not be encrypted in any way). If you are using data files created by another
software package, you must save the data out as an ASCII text file before you can use it with
CSPro. Data files are limited to 2 gigabytes in length.

Items in data files must be fixed format, that is, items must have the same starting position and
length in every record where they occur.

There are two basic types of data file structures: those that contain single-record questionnaires,
or those that contain multiple-record questionnaires. The following is a brief description of these
two types.

A Single Record Type Per Questionnaire

In a single-record data file, each line of data from the data file equates to a distinct questionnaire.
This means there is no relationship between records in the data file—each record stands on its
own and is distinct from another.

One usage for a single-record questionnaire would be a student survey at a university. In this
scenario, a single record would be created based on the student. The student identification
number could serve as the questionnaire identification. A data file produced from this type of
dictionary is known as a flat data file.

Multiple Record Types Per Questionnaire

In a multiple-record data file, several lines of data (and therefore several records) from the data
file equate to one questionnaire. This means there is a relationship between records in the data
file—and information identifying them as such in the form of Questionnaire Ids will be needed.

For example, in a typical housing and population census, a questionnaire would contain the
following records:

. one housing record
. multiple (zero or more) population records

Therefore for a given questionnaire there would be one or more population records for one
household record. A sample (and recommended) file structure could be as follows (not all fields
are defined for this example):

11010011122122

2101001120109196138
2101001212105196732
2101001311707199207
11010021111121

2101002110716193069
2101002220812192871

In the example above:

red text refers to the record type. In our example, 1 is a household record, and 2 is a
population record.

20

bl ue textrefers to the (Id ltems). Note that the numbers are unique for each questionnaire:
the 101001 household contains three people whereas the 101002 household contains

two people.
bl ack text describes the individual data items for each specific record.

Levels

Levels

By default, all new dictionaries have one level. This is normally sufficient to describe, for example,
a population or agriculture census. However, if you have a hierarchically-structured set of
guestionnaires, you will probably need to use additional levels (note that the maximum number of
levels allowed in a dictionary is three).

A good use for a three-level dictionary might be a reproductive health survey that has the
following questionnaires:

¢ A housing questionnaire
¢ A questionnaire for each woman of reproductive age in the household

¢ A questionnaire for each woman's child in the household

A pictorial representation of this scenario is as follows:

Houzehold
whoman #1 Wwiomar H2 YWioman #3
Child $#1 Child #2 Child #1 Child #1 Child #2 Child #3

In this example, you would want each child to be associated with its mother, rather than the
household record. If you were to structure your dictionary in a single level, there would be no way
to easily identify which mother and child(ren) belonged together during data entry or during
tabulation. To accomplish this, you would want to design your dictionary with three levels, each
level containing a single type of record, as follows:

Level 1
Household Record
Level 2
Woman of Reproductive Age Record
Level 3
Child Record

In the Forms Designer you will be required to place each record's data on different forms (as they

are located in different levels). However, this will facilitate the desired data entry behavior. You
will first be asked to enter information from Level 1, i.e., the household. After completing the

21

household form(s), you will then enter information for the first woman (Level 2). When data entry
is finished for this woman (and therefore the level), the keyer will advance to the final level, and
enter information for a child (if any). After entering data for child #1 (and thereby completing Level
3), the Child Form will reappear, waiting for entry for the next child.

If there are none, finish the level by pressing Ctrl+F12 (EndLevel) and resume entering
information for the second woman and her children. Continue in this manner until all women and
their children have been entered for the household—when finished, press EndLevel from the
Woman Form to complete data entry for this case.

Keep in mind there are implications when using more than one level, with respect to the order of
executing logic in a data entry application or in a batch edit application.

Identification Iltems

Identification items (i.e., ID items) are those data items that uniquely identify the questionnaire.
These data will appear on every record in a data file, as they are "common" to all of the records.
Quite often such items are identification or geographical items, such as Province, District, or
Survey ID Number. If you open a dictionary in CSPro and press Ctrl+L (L=layout), you will see
a nice pictorial representation of this (press Ctrl+L again to toggle the view off).

If you are using absolute positioning, you will typically want to structure your dictionary such that
the Id items begin in column 2, so that they will precede a record's data items (column 1 is usually
reserved for the record type identifier). If you are using relative positioning, you have no choice
but to place the Id Items first.

See also: Item Properties

Level Properties

Level properties are visible when the dictionary has been selected in the tree tab. To modify any
of the following properties, select the level you want to modify in the view and press Ctrl+M.

Property Meaning

Label A descriptive text label to identify this level.

Name The name of this level for use in the CSPro language procedures.
Tips

¢ You can press the Esc key to abandon modification. No changes will be saved.
* You can always undo a modification if you decide it was incorrect.

Records

Records
A record usually corresponds to a section of a questionnaire, and consists of a group of related

data items. For example, data items related to housing would form a housing record; data items
related to individuals would form the population records.

22

In the process of creating a record to define (a portion of) the questionnaire, you will also be
defining the physical layout of the data file. For example, suppose your (very simple) population
record looks like the following (only item name, starting position, and length properties are shown;
starting positions show that ID items occupy the first 9 positions in the record):

tem Name Start Pos Length
Relationship 10 1
Sex 11 1
Age 12 2

Therefore, if an operator had keyed a questionnaire for a 35-year-old female (Sex = 2) head of
household (Relationship = 1), you would see a line in the data file, corresponding to the
population record defined above:

1 2
12345678901234567890 <-- position

1235 <-- line in data file

Record Type

The Record Type is an alphanumeric item that uniquely identifies a dictionary record, and
therefore helps describe your data file's organization. If your dictionary contains more than one
record, you need to be able to identify one record from another in the data file. Record Type
provides the method to do this. For example, a census data file would most likely have a housing
record (describing details of the home) and a person record (to describe details on each
individual in the household). You could assign a Record Type of '1' to the Housing record and '2'
to the Person record to distinguish between them.

If your dictionary contains only one record, you do not need to use a Record Type. Therefore, you
can 'reclaim' the location that was set aside for the Record Type as follows:

5 Select the (Id Items) set or the one-and-only record your dictionary contains from the dictionary
tree.

6 In the view on the right, you'll notice the first line is (record type). Only three values are used,
Starting_Position, Length, and Data Type. Of these three values, you can only modify the
start position and length. Change the length to 0. This will effectively "remove" the record type.
(You can always reinstate it later by resetting the start position and length to non-zero values).

Similarly, if you would like to modify the length of the Record Type, proceed as above.
Tips
e Upper- and lowercase letters are distinct Record Type values (i.e., 'A' is not the same as 'a’).

* Each record must have a unique identifying alphanumeric symbol.
* Blank is a valid Record Type value.

Record Properties
You can view a record's properties by selecting the questionnaire to which it belongs (via the

dictionary tree tab). To modify any of the following properties, select the record in the view and
press Ctrl+M.

23

Attribute Meaning

Label A descriptive text label to identify this record.

Name The name of this record for use in the CSPro language procedures.
Type Value The record type value (code) that identifies this kind of record.
Required Must a questionnaire contain this kind of record? (Yes/No)

Max The maximum number of times this type of record can appear in any one
guestionnaire.

Tips

e You can press the Esc key to quit modifying without making changes.

e Use undo if you completed the modification incorrectly.

See also: Records, Record Type

Record Type Value

If a record type is required for data file, each different type of record must have a unique record
type value. The record type value is always alphanumeric. For a typical housing and population
census, there are usually two types of records, a housing record and population record. The
housing records might have a record type value 1 while population records have a record type
value of 2. This value tells what kind of information is contained on the record.

See also: Record Type, Record Properties, Label, Name, Max

Required

One of the Record properties is whether or not the record is required. This means for a given
guestionnaire, must there be at least one occurrence of the given record (in which case it's
required), or can you have a complete questionnaire with no occurrences of the given record (in
which case it's not required).

Suppose you are designing a dictionary for a census. You'll probably have at least two types of

records, one for the household, and one for the persons in that household. You can have two
scenarios:

¢ If you allow vacant housing units (i.e., you collect information on empty housing units), then the
household record is required and the person record is not required.

¢ If you allow homeless people, then the household record is not required and the person record
is required.

The Record is either Required (Yes) or not (No).

See also: Label, Name, Type Value, Max.

24

Maximum Number

This record property specifies for the given record, the maximum number of occurrences allowed
in one questionnaire.

For example, suppose you are designing a dictionary for a census. You'll probably have at least
two types of records, one for the household, and one for the persons in that household. There
should be only one occurrence of the household record, but for the person record you'll of course
need more than one occurrence, as there will likely be more than one person in a household. So
your maximum for the person record could be 25, if limiting yourself to a family unit, or larger, if
enumerating group facilities (military barracks, hospitals, mental institutions, etc.).

The maximum number of occurrences a record can have is 9,999, though we would not
recommend that you ever have this many.

See also: Record Type, Record Label, Record Name, Type Value, Required.

ltems

Record Items

A data item describes the response to a question, and is therefore the most basic element of a
guestionnaire—age, income, and crop-code are all examples of items.

Related items should be placed in the same record. And, just like records and levels, data items
possess properties (such as a unique name, label, etc).

Subitems allow items to be broken up into smaller pieces, or across broad categories. In this
respect, they let you redefine data items and refer to the same data field in several different ways.

One useful application of subitems involves date and time fields. A date item, for example, could
be referred to as a single 8-digit entity: DDMMYYYY. However, this does not allow you to easily

manipulate or refer to a portion of the date (such as the day, month, or year itself). Suppose you

had the following definition for date (for demonstrative purposes, not all item properties are being
shown):

Item Label Item Type Starting_Position Len
Date of birth Item 20 8

To redefine this item into subitems, you only need to add the following subitems:

Item Label Item Type Starting_Position Len
Day of birth Subitem 20 2
Month of birth Subitem 22 2
Year of birth Subitem 24 4

Another reason for using subitems is to make data references available in larger categories.
Censuses and surveys often have items of three or four digits in length representing categories
such as industry, occupation, or ethnicity. For occupation codes, the full value refers to a very
detailed occupation, such as bus driver. The first digit alone refers to the 'major' division, such as
'‘public service'. The first two digits together refer to a more detailed 'major' division, such as
'‘public transportation'. It may be useful to test the ranges with the CSPro Language at the item
level. In CrossTab, tables can be made at the major (1- or 2-digit) or minor (3- or 4-digit)
divisions. The following example could represent part of an economic survey:

25

Item Label Item Type Starting_Position Len

Occupation Item 45 4

Occupation, Major Subitem 45 1

Occupation, Sub-major Subitem 45 2

Occupation, Minor Subitem 45 3
Tip

¢ The use of subitems to provide multiple groups of values (for example, "Age by 10 years" and
"Age by 5 years") isn't necessary in CSPro. Value sets allow you to have as many value
definitions for each item as you need.

See Also: Item Properties

Item Properties

You can view an item's properties by selecting the record to which it belongs (via the dictionary
tree tab). When creating an item, the following must be set:

Attibute Meaning

Label A descriptive text label for the item. Used as default field text in data entry forms
and in default titles in cross tabulation.

Name The name of this item for use in CSPro procedures.

Start The starting position of the item within the record.

Len The length of the data item (i.e., the number of characters necessary to represent
the item).

Data Type The data type of the item, either numeric or alphanumeric.

Item Type Whether it is a "regular” item or a subitem (i.e., part of a larger item).

Occ The number of times this item will repeat within the record.

Dec The number of decimal places (if any) in the item.

Dec Char Should the item be stored in the data file with a decimal character? (Yes/No)

Zero Fill Should the item be stored in the data file with leading zeros? (Yes/No)

Tips

e Press the Esc key to quit modifying without making changes.
e Press Ctrl+Enter to finish making changes.

e Use undo if you completed the modification incorrectly.

Starting Position

26

This item property indicates the starting location of a data item. In conjunction with the length
property, it specifies the location of the item in a record.

¢ In absolute positioning mode, you cannot give a starting position that will cause the item to
overlap with another item.

e The start position of a subitem must be within its parent item (the previous item).

See also: Relative vs. Absolute positioning. Other item properties Label, Name, Length, Data
Type, Item Type, Occ, Dec, Dec Char, Zero Fill.

Length

This item property indicates the total length of a data item. In conjunction with the start property,
it specifies the location of the item in a record.

¢ In absolute position mode, you can not give a length that will cause the item to overlap with
another item.

e The maximum length of a Numeric item is 15 digits.

e The maximum length of an Alpha item is 255 characters.

See also: Other item properties Label, Name, Start, Data Type, Item Type, Occ, Dec, Dec Char,
Zero Fill.

Data Type

This item property specifies what type of data will be expected during data entry for the dictionary
item. The possible data types are Numeric or Alphanumeric.

¢ Numeric items can contain numbers or blanks. Numeric values will be right-justified and, if
requested, zero-filled.

¢ Alphanumeric items can contain any character, letter, or number. These values will be left-
justified and are blank-filled, whether or not zero-fill has been selected.

Some responses are quantitative, such as size of farm, and some are qualitative, such as
relationship to head of household. Responses can be numeric or alphanumeric. Most descriptive
responses, such as 'head of household', are equated to numeric codes which are placed on the
guestionnaire. However, some descriptive responses remain as alphabetic text.

Thus, numeric responses can be discrete values or continuous values. An example of a discrete
value is gender, 1 (male) or 2 (female). An example of a continuous value is yearly income. A
discrete value may be used to designate a quantity category. For example, when asking income,
one may be asked to select from a choice of ranges of incomes rather than specify the exact
income. Thus, the possible responses to the income question could be a code between 1 and 10.

An alphanumeric value consists of alphabetic and numeric characters, blanks, and special
characters. For example, 'M' or 'F' for gender is an alphanumeric value.

See also: Other item properties Item Label, Item Name, Start, Len, Iltem type, Occ, Dec, Dec
Char.

27

ltem Type

This item property specifies whether the data is an Item or a Subitem (i.e., a redefinition of a
portion of an item). Item will be your most common choice for a data item.

Example:
Item Label Iltem Type Start Len
Date of birth Item 19 8

Day of birth Subitem 19 2
Month of birth Subitem 21 2
Year of birth Subitem 23 4

If an item has multiple occurrences, then its subitems may not have multiple occurrences.
Conversely, if a subitem has multiple occurrences, then its parent item may not have multiple
occurrences.

Tip
* InIMPS 3.1 it was very common to use subitems to redefine data items. This is more easily
accomplished now with value sets.

See also: Other item properties Item Label, Item Name, Start, Len, Data type, Dec, Dec Char,
Zero Fill.

Occurrences

This item property defines the number of consecutive repetitions of the item in the data record.
The dictionary will reserve space equal to the product of the length of the item times its number of
occurrences.

Example:

A census collects information on births and deaths, and each questionnaire can list the ages of
up to a dozen household members who died during the past year. By defining an item "Age at
death" with a length of 2 digits and 12 occurrences, the dictionary will reserve a location 24
characters wide for this item.

Realize that if fewer than 12 people died in the household, then the unused portion of this item
will be blank. If you have several items that use occurrences and they are often unused, you
are increasing the size of your data file. Therefore, you should always select the occurrence
size with care.

If an item has multiple occurrences, then its subitems may not have multiple occurrences.
Conversely, if a subitem has multiple occurrences, then its parent item may not have multiple
occurrences.

See also: Other item properties Item Label, Item Name, Start, Data type, Item type, Dec, Dec
Char, Zero Fill.

Decimal Places

This item property lets you specify how many digits of the numeric item represent a decimal
portion of the item. CSPro does not expect the decimal point to be in the data file; if your data file

28

does contain the decimal point, you will need to set the decimal character property. Therefore, the
length of the item is not affected by the number of decimal places.

Example:
Suppose you had two data files, each containing an item in the format "##.##". One file has an
implied decimal point, the other file physically contains the decimal point. Here are the two
ways to define the item (using 12.75 as an example)
Length Dec Dec Char
4 2 No (decimal implied; number would appear as "1275")
5 2 Yes (decimal present; number would appear as "12.75")

See also: Other item properties such as Item Label, ltem Name, Start, Length, Item type, Occ,
Zero Fill.

Decimal Character

This item property applies to those numbers specified as decimal. If the number is a decimal
value, this states whether or not the decimal point is present in the data file. Therefore your valid
choices are:

* Yes the data file contains a decimal point for this item, or
* No the data file does not contain a decimal point for this item.

Note that if your item does not have a data type of numeric, the Data Dictionary will not allow any
value other than No.

See also: Other item properties such as Item Label, ltem Name, Start, Len, Item type, Occ, Zero
Fill.

Zero Fill
This item property states whether the numeric data item should contain leading zeros or blanks.
Example:

During data entry a numeric item with a length of 3 is encountered. A value of '92' was keyed.
How will this value be stored in the data file?

e If zero-fill had been set to Yes, the value would appear as ' 092’
* If zero-fill has been set to No, the value would appear as' 92'

See also: Other item properties such as Item Label, ltem Name, Start, Item type, Occ, Dec, Dec
Char.

Values

Value Sets

29

Value sets let you specify one or more group of values for a data item or subitem. When using the
CrossTab or MapViewer modules, you will want to choose Value Set labels to tabulate/map, as it
will give you more descriptive results. The resulting tables (or maps) will contain row and column
labels (or region labels) that correspond to the value labels (or numeric distributions, if no value
label is present). In a Batch Edit or Data Entry application, the use of value sets can help you
when using the vset option to the impute function.

For example, suppose you have a survey that needs to classify peoples' ages three different
ways: by discrete value, by 5-year cohorts, or by category, such as "Child," "Adult," etc. This is
easily done by adding value sets for the AGE data item (which is the 5th item in the person record
and the reason why we have prefaced the names with "P05_") with the following properties:

Value Set Label Value Set Name Value Label From To
Age PO5_AGE_V1
0 98

Not Reported 99

Age by 5 years P0O5_AGE_V2
0 to 4 years 0 4
5to 9 years 5 9
10 to 14 years 10 14
15to 19 years 15 19
20 to 24 years 20 24
25 to 29 years 25 29
30 to 34 years 30 34
35 to 39 years 35 39
40 to 44 years 40 44
45 to 49 years 45 49
50 to 55 years 50 54
55 to 59 years 55 59
60 years and over 60 98

Age by Category P05_AGE_V3
Infant 0 0
Child 1 12
Teenager 13 19
Adult 20 59
Senior 60 98

The AGE item now has three defined value sets: PO5_AGE_V1, P05 _AGE_V2, and
P0O5_AGE_V3. The first value set defines the acceptable range for data entry, while the second
and third value sets give a breakdown as you might want to see the data tabulated.

Value Set Properties

You can view a value set's properties by selecting the item to which it belongs (via the dictionary
tree tab). When creating an item, the following must be set.

Attibute Meaning

Value Set Label A descriptive text label for a collection of categories of an item. Used by the
CrossTab module to select items for tabulation and in table titles.

Value Set Name The name of this item for use in the CSPro language procedures.

30

Values

A single value set can contain one or more values. The following properties are available to
describe these values.

Value Label The descriptive text for a single value or range of values. This label is used by
the CrossTab module when creating column headings and stubs.

From Value or starting value of a range.

To Ending value of a range.

Special What type of special value this is (blank if there is no special value; otherwise, you may
choose among Missing, NotAppl(icable), and Default).

Multiple ranges

To add multiple ranges to a value, enter one or more spaces as the value label on the next

value(s), the values which follow become part of the previous value. Multiple ranges are
indicated by the lack of a notes box at the beginning of the value line.

Strategies

Creating a Dictionary for a New File

To begin, you need to create a new data dictionary. When finished, CSPro will have generated a
new dictionary (named MyDict here) with the following structure:

Elﬁ kdwDrict
El!!. Guestionnaine
e [1d Items)

So what is this? CSPro created a dictionary ("MyDict") with one level ("Questionnaire"), and that
level contains a set of ID Items ("(Id Items)") and one record ("Record").

The first thing we suggest you do is change the level properties (i.e., the label and/or name) to
reflect your intended usage for them. Next, change the record properties; for example, if this is an
agricultural survey, you might want to call your record 'Crop'. Note that you cannot change the
label or name of the (Id Items) set.

If this structure is sufficient for your needs, you can begin adding data items to the (Id Items)
set(s) and each record you created. Remember that data items defined in the (Id Items) set will
appear on each record in the current level, as well as each record in lower levels.

However, if you need additional records for this level, you should create them first. To do so,
select the Crop record and press Ctrl+A. Provide the required record properties and continue as
desired. To terminate the 'add record' mode, press <Esc> when you receive a new (blank) record
entry.

If you need to add additional levels (recommended only for more complex censuses and
surveys), you can do this by selecting the '‘Questionnaire’ level and pressing Ctrl+A. After

31

entering the second level, the 'add level' mode will continue for one additional level (you are
allowed a maximum of three levels). To terminate with just two levels, press <Esc> when you
reach the (third) new level entry. Additional levels will have exactly the same structure as the first
one, i.e., an (Id ltems) set and a record ('New Record").

You are now ready to begin using your dictionary to design forms, run cross tabulations, and
more!

Creating a Dictionary for an Existing File

To create a dictionary from an existing file you will need written documentation concerning the

organization of the data on the file. This is usually presented as a set of record descriptions.

These record descriptions tell what are the different kinds of records, what fields are on each

record, what is the starting position and length of each field, what type of data is contained in

each field, what values can appear in each field and what do they mean.

Once you have the record descriptions for the data file you are ready to create the dictionary.

1 With CSPro create a new Data Dictionary file.

2 Turn OFF the Option for Relative Positioning so that you can position each data item
according to the written specification.

3 Define in the Data Dictionary, the records, items, values from the record description.

See also: Select Relative or Absolute Positioning

Converting ISSA or IMPS Dictionaries

CSPro will convert your existing IMPS 3.1, IMPS 4.1, or ISSA dictionary (any version) to the
CSPro dictionary format. You can also save your CSPro dictionary file out as an IMPS 3.1 or
ISSA dictionary. Either way, just do the following:

1 Click the Tools menu, and then click Convert Dictionary.

2 Choose whether you are converting between CSPro and IMPS, or CSPro and ISSA, then
press Next.

3 Choose the type conversion you are performing and press Next.
4 Choose the file name of the dictionary you are converting.
5 Specify the file name of the dictionary you are generating.

6 Press Finish when ready.

How to ...

Move Around a Dictionary

Press To

32

Up Arrow Move up one line

Down Arrow Move down one line

Page Up Scroll up one screen (if possible)

Page Down Scroll down one screen (if possible)

Ctrl+Home Jump to first record, item, or value (from the view only)
Ctrl+End Jump to last record, item, or value (from the view only)
Ctrl+Left Arrow Scrolls left (if possible, and from the tree only)
Ctrl+Right Arrow Scrolls right (if possible, and from the tree only)
Ctrl+Up Arrow Multi-selects rows (from the view)

Scrolls up (if possible, and from the tree only)

Ctrl+Down Arrow Multi-selects rows (from the view)

Scrolls down (if possible, and from the tree only)

See also: Add, Delete, and Modify Dictionary Elements. Toolbar Summary

View the Dictionary Layout

Pressing from the toolbar will display the current dictionary's file layout. It shows you where,
physically, each item in each record is located, how much space has been allocated to it, and if
there are any gaps in your file (possible when the file's status is absolute).

]
B
£
£

Tips

denotes the Record Type
denotes Id Items
denotes record Items
denotes Subitems

* You can also launch the viewer by pressing Ctrl+L or, from the View menu option, select
Layout

¢ Single click on an item to move to the item's definition.

¢ Double click on an item to show its value set(s).

e Press Ctrl+L a second time to close the view.

Add Dictionary Elements

You can add a level, record, item, value set, or value to a dictionary. You can add from either the
tree or view—in either case, the dictionary's menu bar and popup menu listing (displayed if you
right-click over a tree item or the view) are context-sensitive. Therefore, depending on what
you've selected, your choice will be to add one of the following:

To add a level ...

1 From the dictionary tree, select any level within the dictionary.

2 Right-click to get the pop-up menu and select "Add Level" (or press Ctrl+A).

3 Complete the level properties requested.

4 When you are finished entering the level(s) desired and wish to terminate data entry, press the
<Esc> key.

33

Note: There is a maximum of three levels for a dictionary.

Tips

After selecting a level in the tree, you can press IZ2l to initiate add mode.
The level will always be added at the end of the dictionary.

If you add to the wrong place, press the <Esc> key to stop the add.
Use undo if you added at the wrong place.

To add arecord ...
1 From the dictionary tree, select any record (or (Id Iltems) set) within the level you wish to add.
2 Right-click to get the pop-up menu and select "Add Record" (or press Ctrl+A).

3 Complete the record properties requested.

4 When you are finished entering the record(s) desired and wish to stop adding, press the <Esc>
key.

There is no limit on the number of records within a level.

Tips

¢ After selecting a record in the tree, you can press |21 to initiate add mode.
e The item will always be added at the end of the record.

* If you add to the wrong place, press the Esc key to stop the add.

* Use undo if you added at the wrong place.

To add a data item ...

1 From the dictionary tree, select the item within the (Id Items) set or Record you wish to add an
item to.

2 Right-click to get the pop-up menu and select "Add Item" (or press Ctrl+A).
3 Complete the item properties requested.
4 When you are finished entering data items and wish to stop adding, press the <Esc> key.
There is no limit on the number of items within a record.
Tips
. . . =] .
¢ After selecting an item in the tree, you can press to initiate add mode.
e The item will always be added at the end of the record.
* |f you add to the wrong place, press the <Esc> key to stop the add.
* Use undo if you added at the wrong place.
To add a value set ...

1 From the dictionary tree, select the (sub)item you wish to add a value set to.

2 Right-click to get the pop-up menu and select "Add Value Set".

34

3 Provide the Label and Name for the Value Set.

4 Complete the value set properties requested.

5 When you are finished entering values and wish to stop adding, press the <Esc> key.
Tips

e The value set will always be added to the end of the item's value set listings.

* |f you add to the wrong place, press the <Esc> key to stop the add.

* Use undo if you added at the wrong place.

To add a value ...

1 From the dictionary tree, select the desired value set.

2 Select one of the value set's values in the view on the right.

3 Press Ctrl+A to begin adding a value.

4 Complete the value properties requested.

5 When you are finished entering values and wish to stop adding, press the <Esc> key.
Tips

¢ The Value will always be added to the end of the value set listings.

¢ If you add to the wrong place, press the <Esc> key to stop the add.
e Use undo if you added at the wrong place.

Insert Dictionary Elements

You can insert a level, record, item, value set, or value into a dictionary. You can insert from
either the tree or view—in either case, the dictionary's menu bar and popup menu listing
(displayed if you right-click over a tree item or the view) are context-sensitive. Therefore,
depending on what you've selected, your choice of insertion will change. In general, the steps to
insert an object are as follows:

1 In the view, move the cursor to the location where you want to insert the dictionary element.
Bia
2 Click on the toolbar or press the Insert (Ins) key.

3 Enter the information requested.

Tips
¢ If you insert to the wrong place, press the <Esc> key to stop inserting.
¢ Use undo if you completed the insert to the wrong place.

Modify Dictionary Elements

You can modify any of the dictionary's items (i.e., a level, record, item, value set, or value). You
can modify an item from either the tree or view—in either case, the dictionary's menu bar and
popup menu listing (displayed if you right-click over a tree item or the view) are context-sensitive.
Therefore, depending on what you've selected, your choice will be to modify the properties of a:

35

e Level

¢ Record
e [tem

¢ Value Set

Delete Dictionary Elements

1 Select the element you want to delete.

2 Click on the toolbar; or from the Edit menu, select Delete; or press Delete/Del.
Tips

* If you delete the wrong object, click on the toolbar to undo the operation and recover the
deleted material.

¢ You can select multiple lines by dragging the mouse over the desired lines.

¢ You can also select multiple lines by selecting the first item, then pressing down on the Shift
key while you use the up or down arrow to adjust the selection.

Undo and Redo Changes

Press on the toolbar; or from the Edit menu, select Undo; or press Ctrl+Z.

Tip
* To undo the next-to-last change, press the Undo button again.

Select Several Dictionary Elements
You can select several dictionary elements of the same type from the dictionary window.
Using the mouse:

1 Click on the line where you want to start selecting.

2 Hold the left mouse button down and drag the mouse up or down until your desired selection is
highlighted. Note that the window will automatically scroll if necessary.

3 Release the mouse button.

Using the keyboard:

1 Using the cursor keys, move to the start of your desired selection, so that the blue highlight bar
is on that line.

2 Press and hold the Shift key.

3 Use the Up and Down arrows to expand your selection. PgUp and PgDn will expand the
selected lines a page at a time.

Tips

e Use cut and copy to move/copy your selection elsewhere within the dictionary, or to use in
another open dictionary.

e You can delete multiple records, items, or values at the same time.

36

e Undo is sometimes a useful feature when dealing with block operations.

Move Dictionary Elements Around

To move things in the Dictionary around use cut, copy, and paste. Cut will delete the material
from the dictionary and place it on the clipboard. Copy will just place a copy of the material on
the clipboard. Paste will place a copy of the material on the clipboard into the dictionary.

To cut things ...

1. Select the material you want to cut.

2. Click on the toolbar; or from the Edit menu, select Cut; or press Ctrl+X.

To copy things ...

1. Select the material you want to copy.

ER
2. Click on the toolbar; or from the Edit menu, select Copy; or press Ctrl+C.

To paste things ...

1. Select the place where you want the records, items, or values to be pasted.

2. Click on the toolbar; or from the Edit menu, select Paste; or press Ctrl+V.

Tips
* You can paste cut or copied material to more than one location.
e Use undo if you paste to the wrong place.

See also: undo

Convert Items to Subitems

1 Select the items you want to convert to subitems.
2 From the Edit menu, select Convert to Subitems.
3 Enter information about the item that will include these subitem(s).

Tips

e To Convert to Subitems, you can also right-click on the item list in the view and select
Convert to Subitems from the popup menu.

e To convert subitems back to items, delete the item. When asked if you wish to "Delete
subitems too?", answer No.

Select Relative or Absolute Positioning

This feature primarily refers to the start positions of your data items. In Absolute positioning, the
start position of each data item you define is kept intact—so if data items are later deleted or
moved, "gaps" that will invariably be introduced will not be automatically removed by the Data

37

Dictionary. If you don't want to introduce holes in your data file, keep the Dictionary's positioning
Relative.

To toggle between Relative and Absolute positioning, select Options from the Menu bar, then
select Relative Positions. A check mark indicates your file is in Relative Positioning; the
absence of a check mark indicates the file is using Absolute Positioning.

Here are the characteristics of a dictionary (and therefore of its data file) when using the different
types of positioning:

In Relative Positioning

* The record type, if present, is always the first item in every record.

* Id items, if any, are always located after the record type (and other Id Items defined at a higher
level).

e Each record's items will be placed after all defined Id items (even those defined at a higher
level than the record).

e There are no gaps or holes between items.

¢ As items are added, inserted, modified, or deleted, other items are automatically moved as
needed to maintain the above arrangement.

¢ Changing the starting position of an item will move it and other items to give the implied
relative arrangement.

In Absolute Positioning

* The record type, id items and record items can be positioned at any location in a record.

¢ All items will remain in their assigned locations, unless specifically moved by the user.

¢ When inserting or adding an item, there must be room (i.e., a "gap") for the item at the
specified location.

¢ When items are deleted, gaps may be created.

¢ When an item's starting position or length is changed, room for the item must exist.

Tips
* Use Relative positions when designing a new data file—you do not normally want holes in
your data files, as this will increase the size of the file.

* Use Absolute positions when describing an existing data file—in this way you won't have to
define the holes in your data file(s). Further, if you only want to use a subset of the data file's

information, using absolute positioning allows you to define only those data items of interest to
you.

Find Dictionary Elements

Search for a given text string using the Find Dialog Box. Names and labels of all dictionary
entities (for example, levels, record, items, value sets) will be searched.

1 Press on the toolbar or Ctrl+F.

2 In the find dialog box enter the name of the record, item or value to find.
3 Press the Next button to search.

If it finds the item, it will be brought into focus in the view; otherwise, you will receive a notification
that it could not be found.

Tip

38

* You can also launch find from the menu bar. Choose Edit, then Find.
The following options allow you to search for text:
Find What
Enter all or part of the text string to search for. Text used in previous searches is available by

clicking on the down arrow and selecting from the dropdown list.

Next
Find the next occurrence of the text string, starting from the last one found.

Prev
Find the previous text string starting from the last one found.

Match Case
If checked, the search will match only if the letters are the same case (upper or lower) as you
entered them. If not checked, the search will ignore case.

Close
Close the dialog box.

Document Dictionary Elements

1 In the view screen on the right, select the element you want to document or change the
documentation.

2 Click on the toolbar; or from the Edit menu select Notes; or press Ctrl+D. You can also
press the button at the font of the line of the selected element, or right click and select Notes.

Save Dictionary As New File
From the File menu, select Save As.

The dictionary in the current frame (right side of the screen) will be saved to a new file. You will
be asked to enter the name of the new file.

Summaries

Data Dictionary Menu Summary

The Data Dictionary menu is displayed across the top of the window. It provides access to most
features used in Data Dictionary. The following menu options are available whenever the right-
hand screen is displaying dictionary items.

Files
New Create a new application.
Open Open an existing application.
Close Close an application.
Save Save an application.
Save As Save the current dictionary to a new file name.
Insert File Insert a file into an existing application.

39

Drop File Drop a file from an existing application.

Page Setup Change headers, footers, and margins for printed pages.
Print Setup Change orientation and paper size for printed pages.
Print Preview Preview the printed pages.
Print Print all or part of a document.
Edit
Undo Undo dictionary changes.
Redo Redo dictionary changes.
Cut Copy selected dictionary element to clipboard and delete it.
Copy Copy selected dictionary element to clipboard.
Paste Paste dictionary element on clipboard to selected location.
Modify Edit the selected dictionary element.
Add Add a dictionary element at the end of the list.
Insert Insert a dictionary element at the selected location.
Delete Delete selected dictionary element.
Notes Edit notes for selected dictionary element.
Find Find a label or name with the specified text.
Convert to Subitems Convert selected items to subitems and insert the item which
contains them.
View
Names in Trees Show names instead of labels in trees.
Full Screen Hide the trees and show full screen view.
Layout Show record layout of file in the window.
Options
Relative Positions Select whether items stay next to each other with no gaps
Tools
Text Viewer View text or data files.
Table Viewer View CSPro tables.
Map Viewer View CSPro thematic maps.
Retrieve Tables Retrieve tables from a data set.
Tabulate Frequencies Tabulate frequency distributions for file contents.
Sort Data Sort cases based on ids.
Export Data Export data in various formats.
Reformat Data Reformat data using two dictionaries.
Compare Data Compare contents of two similar data files.
Concatenate Data Join text files one after the other.
Convert Dictionary Convert an ISSA or IMPS dictionary to CSPro.
Convert Shape to Map Convert an ESRI shape file to CSPro map file.
Window
Cascade Arrange windows in an overlapping fashion.
Tile Top to Bottom Arrange windows one above the other.
Tile Side by Side Arrange windows one beside the other.
Help
Help Topics Get help on current application.
About Get information about the software.

Data Dictionary Toolbar Summary

The Data Dictionary toolbar is displayed across the top of the window, below the menu bar. It
provides quick mouse access to many features used in the Data Dictionary. It is available
whenever the right-hand screen is displaying dictionary items

Click To

Create a new dictionary.

40

Open a dictionary.

Save a dictionary.

Set up page margins and headings for printing.
Preview contents of the dictionary.

Print contents of the dictionary.

Undo the last change to dictionary.

Redo last undo.

Cut the selected records, items, or values to the clipboard.
Copy the selected records, items, or values to the clipboard.

Paste the contents of the clipboard to the current position.

Add levels, records, items, values sets, or values.
Insert levels, records, items, values sets, or values.

Delete levels, records, items, value sets, or values.

Edit Notes for dictionary, level, record, item, value set, or value.
Find a label or a name in the dictionary.

Show the Layout window.

Show last Dictionary window.
Show last Forms window.
Show last Batch Edit window.

Show last Cross Tabulation window.

= EEy O XEE EEEEE BRE DN

Get Help.

Data Dictionary Keys Summary

Shortcuts specific to the Data Dictionary

Ins Insert level, record, item, or value at selection point.
Del Delete level, record, item, or value.

Ctrl + A Add level, record, item, or value to end of list.
Ctrl +D Edit notes for this dictionary element.

Ctrl + L Show or hide layout view.

Ctrl + M Modify a level, record, item or value.

41

Shortcuts common throughout CSPro

Ctrl + C Copy the selection and put it on the Clipboard.
Ctrl + F |Find specified text.

Ctrl + N Create a new document.

Ctrl + O Open an existing document.

Ctrl + P Print the active document.

Ctrl +S Save the active document.

Ctrl + T Show names instead of labels in tree.
Ctrl + U Full screen.

Ctrl +V Insert Clipboard contents clipboard.

Ctrl + X Cut the selection and put it on the Clipboard.
Ctrl +Y Redo the previous undone action.

Ctrl +z Undo last action.

Ctrl + F4 Close the active document.
Alt + F4 Quit the application.
F1 Show help contents and index.

Data Entry Designer

Introduction to Data Entry Designer

The Data Entry Designer allows you to create, using a single dictionary, one or more forms for
data entry.

This is the design stage of the data entry process. This tool allows you to create data entry forms
(screens) and to specify how the data entry application will behave. If you have a printed
guestionnaire you will probably want to use it as a guide when deciding text and field placement,
as well as the order of entry for the items.

After you have developed forms to your satisfaction, use CSEntry to input the data.

Data Entry Concepts
Data Entry Methodologies
Operator vs System Controlled
Data Entry Path
Forms
Fields
Rosters

Strategies
Creating a New Data Entry Application
Deciding What Forms and Rosters to Use
Converting an ISSA Data Entry Application
Converting an IMPS Data Entry Application

How to ...

Generate a Default Application
Add Things

42

Use Rosters

Rearrange Things

Modify Things

Change Entry Characteristics
Add and Modify Procedures
Test and Run Applications
Setup a Production System

Summaries
Menu
Toolbar
Keys

Data Entry Concepts

Data Entry Methodologies
Heads-Down Keying

This methodology is common in census keying because of the large volumes of data involved.
While entering data, the operator generally does not look at the computer screen, but rather,
looks down at the questionnaire on the table or work surface. The objective of heads-down
keying is to transcribe to the computer as quickly as possible the data as they appear on the
guestionnaire. On-line checking is generally kept to a minimum and consistency errors are
resolved in a later phase, generally through computer edit programs.

Operators do not need to be familiar with the subject matter of the questionnaire. They make
very few decisions to resolve data errors. The most important skill is speed and accuracy.
CSPro provides Operator Statistics to help measure operator speed and accuracy.

Heads-Up Keying

This methodology is commonly used for entering data from surveys, due to the smaller number
and greater complexity of the questionnaires (as compared with a census). While entering data,
the operator often refers to the computer screen as well as to the questionnaire. The objective of
heads-up keying is to catch and correct as many errors as possible as the data are being
entered. As a result, there is generally more on-line checking programmed into the application.

Operators need to be very familiar with the subject matter of the questionnaire. They will make
decisions to resolve data errors, and must be properly trained to do so.

Operator vs. System Controlled

CSPro offers two distinct types of data entry applications. Your choice will determine certain
behaviors at data entry time. Some special data entry keys will behave differently. For more
detail about special data entry key behavior, please refer to the Data Entry User's Guide.
Operator controlled

This is the default type. These applications generally allow the data entry operator more flexibility

during data entry. This type is recommended for simple ad-hoc applications and for census
applications. Operator controlled applications have the following features:

43

Some special data entry keys are active during data entry.
CSEntry will not keep track of the Path.

Not applicable values will be allowed.

More consistent with the heads down methodology.

Operator can bypass logic in the application using special keys.

System controlled

These applications generally place more restrictions on the data entry operator. This type is
sometimes used for complex survey applications. The behavior of these applications at data
entry time is essentially the same as in ISSA. System controlled applications have the following
features:

Some special data entry keys are not active during data entry.
CSEntry will keep track of the Path.

Not applicable values will not be allowed.

More consistent with the heads up methodology.

Logic in the application is strictly enforced; operator cannot bypass.

Note: You set the application type on the Change Data Entry Options dialog box; Options/Data
Entry from the main menu toolbar.

Data Entry Path

CSPro supports a powerful feature called data entry Path. The path can either be turned on or
of f, depending on the application type selected on the Data Entry Options dialog box. Operator
controlled applications always have path turned off, while system controlled applications always
have path turned on.

Path on

CSEntry will keep track of the order in which the data entry operator entered all fields. If the
operator goes backward, the cursor will go to the fields in the reverse order in which they were
entered. For example, if the logic causes the cursor to skip over a set of fields, the cursor will
also skip over these fields when the operator goes backwards. Fields that were skipped can
never be entered, unless the operator goes backwards and chooses different values to avoid the
skip. This helps ensure the integrity of the data file.

Path off
CSEntry will not keep track of the order in which the data entry operator entered the fields. If the

operator goes backward, the cursor will go to the preceding field even if it had originally been
skipped.

Forms

A form is a collection of fields, text and, optionally, rosters which appears on the screen at the
same time during data entry.

44

A form may be larger than the actual screen. In this case, the form will scroll as necessary during
data entry. A form may repeat if it contains fields from a dictionary record which has more than
one occurrence.

See also: Adding a Form, Adding Fields to a Form

Fields

Fields are areas of a data entry form that may be keyed or may show values. Fields belong to
either forms or to rosters. Fields are always associated with dictionary items. Some properties of
fields, such as length and type (numeric or alphanumeric) are defined in the data dictionary.
Other properties are defined in the forms designer. You may define the following kinds of special
kinds of fields.

Persistent fields
Persistent fields are ID fields that take the value from the previous case in the data file as their
default. Persistent fields are typically used for geographic IDs that change very seldom from
one case to another. These fields are shown as light gray boxes on the form. In CSEntry, the
operator must press a special key (F7) to change the value of a persistent field.

You can make any ID field (except for mirror fields) persistent, as long as it is already on a
form. Right-click on the field and select Properties to get to the Field Properties Dialog Box.

Sequential fields
Sequential fields automatically increment at data entry time. They are commonly used as
occurrence-number fields in multiple groups

A sequential field takes the value 1 on the first occurrence. For subsequent occurrences,
CSEntry will use the value of the previous occurrence and add 1. If the field is not also marked
as "protected", the operator may change the sequence at any time by simply keying a new
value, and from that point, CSEntry will use this new value to continue the sequential
incrementation.

You can make any field (except for mirror fields) sequential, as long as it is already on a form.
Right-click on the field and select Properties to get to the Field Properties Dialog Box.

Note: You can define your own kinds of sequential behavior for fields by writing pre-
processing logic. In this case, do not use the sequential field attribute.

Protected fields
Protected fields are not keyed during data entry. Protected fields are commonly used to
display a value which is calculated elsewhere (for example, the sum of other keyed fields).
You must write logic to set the value of a protected field.

You can make any field protected, as long as it is already on a form. Right-click on the field
and select Properties to get to the Field Properties Dialog Box.

Upper Case fields
Alphanumeric fields can be upper case. This means that every alphabetic character that is keyed
will be forced to upper case.

Mirror fields

45

Mirror fields show the value of a previously-entered field on the screen. The cursor never goes
to a mirror field during data entry. Mirror fields are useful to display values from one screen on
another screen. Any field from a single-occurrence group can be a mirror field.

A common use of mirror fields is to show the geographic IDs on all screens. The first form
might contain the geographic (level) ID fields which the operator keys in, and subsequent forms
might contain the geographic ID mirror fields, which will show the operator the ID values even
when the ID form is not on screen.

The first time you drag a dictionary item onto a form you create the normal entry field. On each
subsequent occasion that you drag the same dictionary item onto a form, you create a mirror
field.

See also: Add Fields to a Form, Change Field Properties

Rosters

e
number| Relationship| Sex
L) L]
L) L]
L] L

A roster is a grid that shows multiple occurrences of a group at the same time. Many
guestionnaires have rosters printed on them. A typical example would show each person as a
row and each column as a variable, as shown above. Rosters can have a vertical orientation, in
which case the rows and columns would be reversed.

L Tl

]

-I
|

In CSPro you can show repeating groups as a roster on a single form or as individual fields on a
form that repeats.

The darker gray area at the top of each column is called a column heading. Inthe example

above, the column headings contain the text "Line number", "Relationship", "Sex", and "Age".

The text in the darker gray area to the left of each row is called the occurrence label. In the
example above, the occurrence labels are "1", "2", "3". These are the default values.

In rosters with vertical orientation, column headings and occurrence labels are reversed.

See also: Add Fields to a Form, Create a Roster

Strategies

Creating a New Data Entry Application

When you create a data entry application (File/New/Data Entry Application), you may select an
existing dictionary on which to base the forms, or you may create a new dictionary and add
variables to it as you create your forms.

46

If you use an existing dictionary, CSPro will create, by default, one form for each dictionary level,
placing the ID Items from that level on the form. No record items will be placed on the form(s).
You are now ready to modify the form(s) as desired.

If you are creating a new dictionary, CSPro will create one blank form by default.

Tip
e Save time by automatically generating data entry forms.

Deciding What Forms and Rosters to Use

CSPro provides flexibility in the way you define how many forms to use and what fields go on
what forms. If you plan to key data from paper questionnaires you generally try to make the
forms match the pages in the questionnaire.

There are limitations imposed by the structure of the data dictionary. Some limitations have to do
with whether records and items are "multiple":

* Arecord is considered multiple if it is defined as Max > 1 in the data dictionary.

* Anitem is considered multiple if it is defined as Occ > 1 in the data dictionary.

¢ A subitem is considered multiple if it has been defined as Occ > 1 in the data dictionary or if
the item it belongs to is defined as Occ > 1.

Keep in mind the following rules when you design your data entry forms:

You can mix items from different single records on the same form.

You can mix ID items with items from single records on the same form.

You can split items from the same record onto different forms.

You can make more than one roster from a multiple record. The rosters can be on the same

form or on different forms.

* You can mix items from a single and a multiple record on the same form, but the latter must
be in a roster.

¢ You cannot mix items from different multiple records on the same form.

e You cannot mix items from different levels on the same form (applies to complex data

dictionaries only)

If you have any multiple records, items, or subitems in the data dictionary you must decide
whether you want to make them into a roster or use a form that repeats. You must take this into
account when deciding what goes on what form.

Converting an ISSA Data Entry Application

If you have an existing ISSA Dictionary that contains forms, CSPro provides a utility to convert it
to a CSPro Form File (a dictionary will be generated as well). See ISSA Conversions for
additional information on how the conversion will work.

At any time in CSPro (you needn't have anything open), you can go to the Tools menu option.
Select Convert Dictionary from the drop-down menu, then choose to convert Between CSPro
and ISSA in the opening dialog box.

Next, state that you'd like to convert from ISSA to a CSPro Forms and Data Dictionary.
Provide the name of the original ISSA dictionary file, and the name you would like to call the

a7

CSPro form file to be generated (a CSPro dictionary file will also be created, and its name will be
based on the form file name). Press OK when ready and the files will be created for you. You
are then ready to fine-tune the layout of the forms as desired.

Note that this creates a stand-alone dictionary and form file; it does not create a data entry
application. Until there exists a data entry application, you cannot write logic for the form
variables, nor can you enter data based on this form file. If you would like to generate a data
entry application, proceed as you would for creating a new data entry application. When you are
asked to provide the name of the form file, simply use the same form file name that was used
during the conversion, and CSPro will complete the task.

Converting an IMPS Data Entry Application

CSPro provides a utility to convert existing IMPS data dictionaries to CSPro. However, there is
no automated tool to convert CENTRY application files. You must create the forms again in
CSPro. See IMPS Conversions for details on how the conversion works.

At any time in CSPro (you needn't have anything open), you can go to the Tools menu option.
Select Convert Dictionary from the drop-down menu, then choose to convert Between CSPro
and IMPS in the opening dialog box.

CSPro is much less constrained than CENTRY in the relationship between dictionary records and
data entry forms. In CSPro you can mix dictionary items from different records on the same form.
See Deciding What Forms and Rosters to Use for more details.

In CSPro you can make the equivalent of the CENTRY "Batch", "Questionnaire", and "Record"
screens. If you use this approach, you must be sure to make all the fields on the "Batch" screen
persistent.

How to ...

Generate a Default Data Entry Application

CSPro can automatically generate a data entry application that places all dictionary items onto
forms. This can save time as it quickly builds up your form(s), allowing you to easily customize
them to your specific needs. One form will be created for each dictionary record (ID items get

their own form as well). Thus, for a one-level dictionary that contains at least one level ID and

three other records, you will end up with four forms.

To generate a data entry application, either press Ctrl+G or, from the dictionary tab on the left

side of your screen, drag the dictionary book ® onto a form. As this action will destroy all
existing forms, a warning message will appear, asking you to confirm that you wish to proceed.

If you choose to proceed, an options dialog box will appear. At this point you have the
opportunity to decide text placement with respect to the data entry boxes; whether you want to
roster items (when possible); whether you want subitems dropped instead of the item, etc. See
the Drag Options help for more information.

48

Add Things

Add a Form

There are three basic ways to add a new (blank) form. Each method will present you with the
form property dialog box.

Method 1: From the Form Designer Tree tab

Right-click over any of the tree entries (i.e., a Form File, Level, Form, or Item). A pop-up dialog
box will appear. Select the Add Form option.

Method 2: From the Form Designer's Menubar
Select Edit, then the Add Form option.
Method 3: From the Form itself

Right-click anywhere over a form. A pop-up dialog box will appear. Select the Add Form
option.

After you have pressed OK on the Form Property dialog box, you will notice on the form tree that
the form was placed last in the current level. You can change the order of the forms by dragging
forms on edit tree.

Add Fields to a Form
The Forms Designer Window Layout

Notice that the CSPro window is split in half. The left side contains one or more tabs; the two tabs
of interest when designing forms are the Dict [Dictionary] and Form tabs. Immediately after
opening or creating a data entry application, CSPro will display the Dict tab on the left, and the
first form for the first (and perhaps only) level will be displayed on the right. You are now ready to
start dragging items and/or records from the dictionary to the form(s).

Drag a Dictionary Item to your Form

Expand the dictionary tree so that the desired item is visible. Holding down the left mouse button,
select the item and drag it to the form, releasing the mouse button when the cursor is at the
desired location on the form. Depending on the drag option settings, either your item or existing
subitems will be dropped onto the form. For example, if you have dragged an item from a record
with multiple occurrences and you have chosen (in the Drag Options dialog) to roster items
when possible, the item will appear as a one-column roster. Dragging additional items from this
record and dropping them onto the roster will append the items to the roster.

Drag a Dictionary Record to your Form
Expand the dictionary tree so that the desired record is visible. Holding down the left mouse
button, select the record and drag it to the form, releasing the mouse button when the cursor is at

the desired location. Depending on the record's properties and the drag option settings, the
item(s) within your record will either be dropped as individual fields or as a roster.

49

Change Drag Options

Whenever you automatically generate a data entry application, drag an entire dictionary'@, or
drag a dictionary record ™ onto a form, this dialog box will appear. When you drag an individual
dictionary item to a form, this dialog will not appear, but the settings in effect will be used. [To
access this dialog box without dragging, go to the Edit menu and select Drag Options.]

The following choices are available to customize your drag-and-drop operation:

Text Options

When fields are dragged onto a form from the dictionary, the dictionary text associated with the
item is usually also included. You can select whether the item’s label, the item’s name, or
neither of these (no text) is dragged onto the form.

You can also select whether the text is placed to the left or to the right of the data entry box.
(This setting has no effect if the item is rostered.)

Roster Options

This affects dictionary records and items with more than one occurrence. To enter this type of
data, you either need a form that repeats (to allow for the multiple occurrences of the data), or
you need a roster.

If you choose "Horizontal" CSPro will make rosters in which the occurrences are the rows and
the fields are the columns. In CSEntry the cursor will move from left to right.

If you choose "Vertical" CSPro will make rosters in which the occurrences are the columns and
the fields are the rows. In CSEntry the cursor will move from top to bottom.

If you choose "Don’t Roster" CSPro will make forms that repeat.

Require Enter Key on Entry?

This option determines whether the Enter key must be pressed to advance an operator to the
next data entry field.

If left unchecked, the cursor will automatically advance to the next field as soon as the
maximum number of characters are entered for the field (that is, if the field length is two, then
after entering two characters the cursor will advance to the next field). An operator can always
hit the Enter key to complete a field without having entered the full complement of digits.

If checked, the operator must always press the Enter key to advance to the next field.

Use Subitems When Present?

If you have items with subitems, you may check this box to place the subitems, instead of the
item, on the form. For example, if you have a Dat e item that contained the three subitems
Day, Mont h, and Year , the subitems, rather than the item Dat e, would be placed on the form.
However, if any of the subitems overlap, the item will be used instead. (This setting has no
effect if no subitems are present.)

If this box is left unchecked, items will always be used.

Add Text to a Form

50

When you add a field to a form by dragging it from the dictionary tree, the dictionary item's label is
automatically placed on the form. You may also add other text to the form (a heading across the
top, for example). To do so:

1 Right-click on the form at the point where you want the text to start.
2 Select Add Text from the pop-up menu.
3 Type in the text, and press Enter.

Draw Boxes on a Form
Selecting Items

When the Forms Designer first opens, the mouse is in selection mode. That is, if you click on a
field, roster, or text item, the item becomes selected. Similarly, if you press the left mouse button
and hold it down while dragging over a group of fields, rosters, and/or text items, all of those
items will be selected. You can then choose to do operations on the selected item(s), such as
move or delete them. If one item is selected, you can also review its individual (field/roster/text)
properties.

Tips
* To quickly select several fields in their entirety, just grab their data entry boxes. This will cause
automatic selection of any accompanying text, as well.

* To quickly select just the text portion of several fields, be sure that the selection field visible on
the screen does not touch any of the data entry boxes.

Drawing Boxes

CSPro also allows the user to draw boxes, as both a means to help visually organize your data
and to make the layout of your form look more professional. For example, if you wish to place
fertility data on one portion of your form and then indicate to the viewer that these data are
related, you could draw a box around the related items.

When you select multiple items with the mouse, you'll notice during the selection process a box
that drags with you to show what you're including. To draw a box on a form, it seemed logical to
have that same mechanism at work, so we've introduced the Select Items/Boxes button. Click

on to toggle between the two states. When you first click on this button it will appear
depressed, and a floating toolbar will appear with the following buttons:

To

& ©
2

Allows you to toggle states between selecting items and drawing boxes without having to
close down the toolbar

Draw a box with an etched edge

Draw a box with a raised edge

Draw a box with a thin edge

o @ & G

Draw a box with a thick edge

51

When you have finished drawing boxes and no longer need the box-draw toolbar, close it down

by either toggling the m button, or close the box-draw toolbar.

Use Rosters

Create a Roster

CSPro automatically creates a roster, under appropriate conditions, when you drag a dictionary
item onto a form. In most cases where a roster is possible, CSPro obeys the Roster Options on
the Drag Options dialog box. Make sure this option is Horizontal or Vertical before you begin. In
some drag and drop operations a roster is not possible and will not be created. In other drag and
drop operations a roster is the only alternative.

Common ways to create a roster include:

* Drag a multiple record from the data dictionary to a blank form. This will generate a roster
containing all the items in the record.

¢ Drag one item from a multiple record in the data dictionary to a blank form. This will generate
a roster containing only that item. You can then add more items to the roster one at a time.

* Drag an item from a multiple record, or the record itself, to a form that contains only items from
another single record or ID items.

* Drag a multiple item or subitem to a form. If you have a multiple item that has subitems, and
you want to create a roster of the subitems, make sure you have the Use subitems if present
box checked in the Drag Options dialog box.

Add Things to a Roster

Add Fields
Rosters can only include items from the same multiple record, or subitems from the same
multiple item. If you created the roster by dragging the entire multiple record or item onto the
form (or by generating a set of forms), there are no more fields that can be added to the roster.

Otherwise, you can drag an appropriate field from the data dictionary and drop it on the roster.
CSPro will add a column to the end of the roster. If you don’t want the field’s column to be at
the end, you can reposition the column after you add it.

Be sure to drop the data dictionary item on top of the roster. Otherwise you will create a
new roster.

Add Text
Right click on the gray space in the roster and select "Add Text". Note that you can choose
whether the text will go only in the cell in which you clicked, or if it will go at the same position
in every cell in the column. You can change this attribute later if you want.

Add Boxes

Right click on the gray space in the roster and select "Add Boxes". Note that you can choose
whether the boxes will go only in the cell in which you clicked, or if they will go at the same

52

position in every cell in the column. You can change this attribute for any box later if you want.
Drawing boxes in a roster is essentially the same as drawing boxes on a form.

Resize and Reposition Things in a Roster

Change roster size

Select the roster by clicking on the gray space in any cell. You will see eight small black squares
around the edges, the resize handles, at the corners and sides of the roster. Move the mouse
pointer on top of a resize handle until the mouse pointer changes to a double-headed arrow.
Click and drag to the desired size. CSPro will automatically create or remove scrollbars as
needed.

Change column width
Move the mouse pointer over the right edge of the column you wish to resize until the mouse
cursor changes to a double-headed arrow. Click and drag to the desired width.

Change row height
Move the mouse pointer over the bottom edge of the row you wish to resize until the mouse
cursor changes to a double-headed arrow. Click and drag to the desired height.

Change order of columns
At data entry time, fields are keyed in the same order in which they appear in the roster
columns, left to right (or top to bottom if the roster orientation is vertical). To change the order
of columns, click on the column heading and drag to the desired position. A gray separator line
will tell you where you are about to drop the selected column.

Move fields, text, or boxes
Select the object by clicking on it. Move the mouse pointer over the object until the mouse
pointer changes to a four-headed arrow. Click and drag to the desired position.

Change Column Heading Properties
Right click on a column heading and choose Properties.

Column Heading

This is the text that shows in the heading. CSEntry may automatically wrap text to make two or
more lines, if the column width is small. You can force your own multi-line text by using
Ctrl+Enter at the end of each line. For example if you type "Age of", then Ctrl+Enter, then
"Mother", you will have two lines of text no matter how wide the column is.

Horizontal alignment
This allows you to force the text to be left-aligned, right-aligned, or centered within the column
heading area.

Vertical alignment
This allows you to force the text to be aligned at the top, middle, or bottom of the column heading
area.

Font

To change the font of the column heading text, choose the "Use custom font for text" radio button
then click on the "Choose font" button.

53

Change Roster Occurrence Labels
Right click on an occurrence label and choose Properties.

Row Heading

This is the text that shows next to the row. CSEntry may automatically wrap text to make two or
more lines, if the width of the occurrence label area is small. You can force your own multi-line
text by using Ctrl+Enter at the end of each line. For example if you type "College or", then
Ctrl+Enter, then "University", you will have two lines of text no matter how wide the occurrence
label area is.

Horizontal alignment
This allows you to force the text to be left-aligned, right-aligned, or centered within the occurrence
label area.

Vertical alignment
This allows you to force the text to be aligned at the top, middle, or bottom of the occurrence label
area.

Font
To change the font of the occurrence label, choose the "Use custom font for text" radio button
then click on the "Choose font" button.

Join and Split Roster Columns

By default, CSPro puts one field in each column. You can put two or more fields in a column by
using the Join facility. To join two or more columns:

3 Select two or more adjacent columns. You can do this by holding down the Ctrl key and
clicking on each column.

4 Right-click and choose Join.

5 Type in the text for the joined column.

If a column already has more than one field in it (from a previous join), you can Split the column
so that there is one column for each field. To split a column:

1 Click on the column heading to select it
2 Right-click and choose Split

Rearrange Things

Move Things

When you drag a dictionary item onto a form, it will be placed on the form at the point where you
released the mouse button. The dictionary label will be used as identifying text for the field, and it
will be placed on the form according to the Drag Options in effect, which may mean the item
becomes rostered. Once the field is on a form, you can fine-tune its placement.

Move a Field

To move a field, select the box and drag it to the desired location. Each field has a text item
associated with it. You can see which text this is by holding down the Shift key and clicking on
the field. This will select both the field and its text. You can now move both of them together by

54

dragging and dropping. You can move a field’s associated text separately by simply dragging
and dropping.

Move a Roster

To move a roster, select it by clicking on the gray space in any cell or in the small box in the top
left corner of the roster. Drag it to the desired location. You can also resize a roster. For more
information about roster operations, see Resize and Position Things on a Roster.

Move Text
To move any text, simply select and drag it to the desired location.

Move a Block of Items
First select a block of items. Then, move the mouse over one of the tracker regions selected.

When you see the mouse cursor change from [% to]%[, you are ready to move the block.
Press down with the left mouse button and drag it to its new location.

A tracker (or tracker region) refers to the item(s) that has(have) been selected with the mouse.
Visually, you will see a heavy dashed line drawn around the item(s).

Align Things

If you have developed your form by dragging individual items from the dictionary to the form, it is
probable that the fields are not precisely aligned to the left and/or right margins of the form. To
correct this problem, you need only select the items you wish to align, and choose one of the
alignment schemes below.

Left
This will take the left-most item (whether the text of a field, the data entry box of a field, a
roster, etc.) and use it as the basis for aligning all other selected elements. This alignment
method works best for fields that have been placed on the form in a top-to-bottom manner,
with text either to the left or right of the respective data entry box.

Center
This will take the mid-point between the left-most and right-most items (whether the text of a
field, the data entry box of a field, a roster, etc.) and use it as the basis for centering all the
selected elements. This alignment method works best to center text items that have been
placed in a top-to-bottom manner, or to center the text of a field over the data entry box.

Right
This will take the right-most item (whether the text of a field, the data entry box of a field, a
roster, etc.) and use it as the basis for aligning all other selected elements. This alignment
method works best for fields that have been placed on the form in a top-to-bottom manner,
with text either to the left or right of the respective data entry box.

Top
This will take the top-most item (whether the text of a field, the data entry box of a field, a
roster, etc.) and use it as the basis for aligning all other selected elements. This alignment
method works best for fields that are spread out across the form in a left-to-right manner, with
text either above or below the respective data entry box.

Mid
This will take the vertical mid-point between the top-most and bottom-most items (whether the

text of a field, the data entry box of a field, a roster, etc.) and use it as the basis for aligning all
the selected elements on the mid-point. This alignment method works best to center text items

55

that have been placed in a left-to-right manner, or to center the text of a field next to the data
entry box.

Bottom
This will take the bottom-most item (whether the text of a field, the data entry box of a field, a
roster, etc.) and use it as a basis for aligning all other selected elements. This alignment
method works best for fields that are spread out across the form in a left-to-right manner, with
text either above or below the respective data entry box.

Evenly Horizontal
This will evenly space 3 or more items (whether the text of a field, the data entry box of a field,
a roster, etc.) horizontally. The left-most and right-most items will not move. This alignment
works best to evenly space data entry boxes across the screen.

Evenly Vertical
This will evenly space 3 or more items (whether the text of a field, the data entry box of a field,
a roster, etc.) vertically. The top-most and bottom-most items will not move. This alignment
works best to evenly space data entry boxes one above the other.

Please note that aligning items could have unintended results. For example, if your fields are
spread across the form from left to right and you choose to left- or right-align them, they will end
up superimposed, one field on top of another. Similarly, if your fields are displayed in a list-type
fashion down the page and you choose to top or bottom align them, they will again end up
superimposed, one field on another. If this happens, you should press Ctrl+Z to undo the change
and restore your previous layout.

Tips
e To select several items, hold down the left mouse button while dragging a selection box around
the desired items.

e To select several items, you can also hold down the Ctrl key while individually clicking on each
item to be selected with your left mouse button.

e To select both a data entry box and its associated description text, hold down the Shift key
while clicking on either the entry box or its associated text.

e To select several data entry boxes and their associated descriptions, hold down the both the

Shift and Ctrl keys while individually clicking on either the edit box or its text for each different
field.

Cut, Copy, or Paste Things

To move things in the Dictionary around use cut, copy, and paste. Cut will delete the material
from the dictionary and place it on the clipboard. Copy will just place a copy of the material on
the clipboard. Paste will place a copy of the material on the clipboard into the dictionary.

To cut things ...

3. Select the material you want to cut.

4. Click on the toolbar; or from the Edit menu, select Cut; or press Ctrl+X.

To copy things ...

56

3. Select the material you want to copy.

Sz
4. Click on the toolbar; or from the Edit menu, select Copy; or press Ctrl+C.

To paste things ...

3. Select the place where you want the records, items, or values to be pasted.

4. Click on the toolbar; or from the Edit menu, select Paste; or press Ctrl+V.

Tips
¢ You can paste cut or copied material to more than one location.
e Use undo if you paste to the wrong place.

See also: undo

Modify Things

Change Forms File Properties
Right click on the form file on the tree (top most entry) and choose Properties.

Label
This is descriptive text which helps you identify the current forms file. It may contain any
characters (including blanks) and be up to 120 characters long.

Name

This is the name of the forms file which you would use when writing programming logic. It may
be up to 32 characters long, and must consist of letters, digits and the underscore ('_") character.
It must not begin or end with underscore.

Tip
¢ You can see either labels or names on the forms tree. Press Ctrl+T to switch back and forth
between them.

Change Level Properties
Right click on the level on the tree and choose Properties.

Label
This is descriptive text which helps you identify the current level. It may contain any characters
(including blanks) and be up to 120 characters long.

Name

This is the name of the level which you would use when writing programming logic. It may be up
to 32 characters long, and must consist of letters, digits and the underscore ('_") character. It
must not begin or end with underscore.

Tip
¢ You can see either labels or names on the forms tree. Press Ctrl+T to switch back and forth
between them.

57

Change Form Properties

Right click on the form on the tree and choose Properties, or right click on empty space on the
form itself and choose Form Properties.

Label
This is descriptive text which helps you identify the current form. It may contain any characters
(including blanks) and be up to 120 characters long.

Name

This is the name of the form which you would use when writing programming logic. It may be up
to 32 characters long, and must consist of letters, digits and the underscore ('_") character. It
must not begin or end with underscore.

Color

The button shows the color of the form. To change the form color, click on this button, select a
new color and click OK. You can change the form color back to what it was originally (usually
gray) by clicking on the Reset Default Color button. You can make all forms the same color by
clicking on the Apply to All button.

Tip
¢ You can see either labels or names on the forms tree. Press Ctrl+T to switch back and forth
between them.

Change Field Properties

Right click on the field on the tree or on the form and choose Properties.

Field-Specific Information

Field Name
This is the name of the dictionary item associated with this field. It is the name you use to
refer to this field when writing logic. Mirror fields will show the dictionary name with three
digits appended to it. You cannot change this property.

Screen Text
This is the text that is associated with the data entry box on the form. You can hold the Shift
key and click on a data entry box to see its associated text.

Skip to
This is the name of the field which will be skipped to if the operator presses the plus (+) key
on the numeric keypad. If the skip to field it is blank and the plus key is pressed, CSPro
skips to the next field in sequence. Skip to is available only in operator controlled data entry
mode.

Persistent
Check this box to make the field persistent.

Sequential
Check this box to make the field sequential.

Protected
Check this box to make the field protected.

58

Upper Case

Check this box to make the field upper case. This attribute only applies to fields whose
corresponding dictionary item is alphanumeric.

Mirror
If this box is checked, the field is a mirror field. You cannot modify this property.

Use Enter Key
Check this box if you want to change the data entry option for this field to force the data
entry operator to press the Enter key to advance to the next field. If left unchecked, the
cursor automatically advances to the next field (after the maximum number of characters
have been entered).

Force Out-of-range

Check this box if you want to change the data entry option for this field to allow the operator to
enter an out-of-range value, that is, a value which is not defined in the dictionary for this field. If
left unchecked, the operator can only enter values defined in the dictionary.

Verify
Check this box if you want to change the data entry option for this field to verify the field
when the operator is in verification mode. If left unchecked, verification is skipped. During
verification mode, after each field is keyed, the value entered is compared with value
currently in the data file. If there is a difference, an error message is displayed, and the field
must be reentered.

Dictionary Information

A form field must be based on an existing dictionary item. The properties listed below give you
some information about this dictionary item.

Dictionary Name
This is the internal name of the dictionary to which this dictionary item belongs.

Record Name
This is the internal name of the record to which this dictionary item belongs.

Item Name
This is the internal name of the dictionary item itself. Note that if this is a non-mirror field,
the Field Name and Item Name will be identical. If this is a mirror field, the Field Name will
be based on the Item Name.

Data Type
This is the type of data expected during data entry. It is usually Numeric.

Length
This is the maximum number of characters that will be allowed during data entry.

Change Roster Properties

Right click on the gray space in any roster cell and choose Properties.

Label

59

This is descriptive text which helps you identify the current roster. It may contain any characters
(including blanks) and be up to 120 characters long.

Name

This is the name of the roster which you would use when writing programming logic. It may be up
to 32 characters long, and must consist of letters, digits and the underscore ('_") character. It
must not begin or end with underscore.

Orientation

This defines whether the cursor will move from left to right or from top to bottom during data entry.

Tip

¢ You can see either labels or names on the forms tree. Press Ctrl+T to switch back and forth
between them.

Change Text Properties

Select any text item to change the text itself. Select any text item or group of text items to change
their font. Once selected, right click and choose Properties.

Text
Enter the new text here. It may contain any characters (including blanks) and be up to 120
characters long.

Font

This shows what font is in effect for the selected text. To change the font, select the Use custom
font for text radio button then click on the Choose font button.

Color

The button shows the color of the selected text. To change the text color, click on this button,
select a new color and click OK. You can change the text color back to what it was originally
(usually black) by clicking on the Reset Default Color button. You can make all text on all forms
the same color by clicking on the Apply to All button.

Note: You can change the font for all text fields on all forms by choosing Options/Global font from
the main menu.

Delete Form Elements
To delete a field from a form:

1 Click on the field on the form, or on the forms tree.
2 Press Delete, or right-click and choose Delete.

To delete a form, do one of the following:

e Click on the form on the forms tree and press Delete
e Choose Delete form from the main menu at the top

Undo/Redo Changes

60

CSPro keeps track of the last dozen changes you have made to your forms on an "undo stack".
Beware that not all changes can be undone.

If you have made a mistake and want to undo it, press on the toolbar; or from the Edit menu,
select Undo; or press Ctrl+Z. CSPro will try to restore your forms to the state previous to last
change you made.

Sometimes you may undo several changes and realize you have gone too far back. Press
on the toolbar; or from the Edit menu, select Redo; or press Ctrl+Y. Redo is an "undo"” of an
undo. You could probably make a nice song out of that.

Change Entry Characteristics

Change the Order of Entry

During data entry, the forms will be shown to the keyer in the order in which they appear in the
forms tree. Within a form, the cursor will move among the fields in the order in which they appear
in the forms tree.

To change the form order, simply drag and drop on the form tree. For example, suppose you
currently have Form A, Form C, Form D and Form B in your level. The forms tree will now show
the following:

eForm A
*Form C
*Form D
*Form B

If you drag the form icon for Form B and drop it on top of Form C, the forms tree will now show:
e Form A
*Form B
*Form C
e Form D

Similarly, to change the order of fields within a form, use drag and drop on the forms tree.

Note: To change the order of fields in a roster you must drag and drop within the roster rather
than on the tree.

Note: You can change the default order in which the forms and fields will be keyed by using logic
in the application.

Change Data Entry Options

Type
This choice is very important and will have a large effect at data entry time. Please see
Operator vs System Controlled for more information.

Ask for operator ID
If this box is checked, CSEntry will prompt the operator to enter an operator ID.

61

Confirm end-of-case

If this box is checked, CSEntry will prompt the operator at the end of each case entered to accept
the case.

Allow partial save

If this box is checked, CSEntry will allow the operator to save a case from add, modify, or verify
mode which has not been completed.

Show case tree

If this box is checked, CSEntry will allow the operator add a tree on the left showing each item in
the case currently being added, modified, or verified and its value.

Require Enter Key
At data entry time, the operator may be required to press the Enter key to advance to the next
field, or the system may advance automatically when the field is filled with the correct number
of digits. In the latter case, the operator can still advance by pressing Enter if the digits are not
all filled. You may set this attribute individually for each field.

All fields
All fields in the forms file require Enter key to advance.
Adds keystrokes for the operator, but controls flow.
More consistent with the heads up methodology.
Selecting this option will change the setting for all fields.

No fields
All fields in the forms file advance automatically.
Fewer keystrokes for the operator.
More consistent with the heads down methodology.
Selecting this option will change the setting for all fields.

Some fields
You can not select this option, it is permanently deactivated. If this option is selected, it
means there is a combination of enter options in affect—i.e., at least one field in the
application has their "Use Enter Key" option checked, and at least one other field in the
application whose "Use Enter Key" has not been checked. Select one of the other two
options to force all fields to the same setting.

Force Out-of-range
At data entry time, CSEntry shows a message every time the keyer enters a value that is out of
range according to the data dictionary. You may set the attribute to override the message and

force the out-of-range value into the data file. If this attribute is not selected, the keyer cannot
proceed until a valid value is entered.

All fields
All fields in the forms file can be forced.
Allows out-of-range values to be entered in the data file.
Allows editing of out-of-range values after keying.

No fields
All fields in the forms file cannot be forced.
Prevents any out-of-range values from being entered in the data file.
Forces the operator to edit out-of-range values.

Some fields require
Different fields in the forms file have different settings.

62

Select one of the other options to force all fields to the same setting.

Upper Case (alpha only)
At data entry time, alphanumeric fields can either allow upper and lower case or they can force
any letter entered to upper case. You may set the upper case attribute for all or some of the
alphanumeric fields.

All fields
All alphanumeric fields in the forms file will be upper case only.
Allows case independent entry of alphabetic characters.
Useful for yes/non (Y/N) or letter character responses (A/B/C/D).

No fields
All alphanumeric fields in the forms file will be mixed upper and lower case.
Allows case sensitive entry of alphabetic characters.
Useful for names and addresses.

Some fields require
Different fields in the forms file have different settings.
Select one of the other options to force all fields to the same setting.

Verify
During verification, each item is either verified, that is keyed again and compared with value
currently in the data file, or not verified, that is displayed on the screen but not entered or
changed. You may set the verify attribute for all or some of the fields.

All fields
All fields are verified.
Allows maximum verification of data.

No fields
No fields are verified.

Useful when only a few fields are to be verified. Set all off, then set the verify property of
each field to be verified.

Some fields require
Different fields in the forms file have different settings.
Select one of the other options to force all fields to the same setting.

Verify Every Nth Case

During verification, you may choose to verify only a subset of the cases in the data file, instead
of verifying all the cases.

Frequency
This is the interval between cases that CSEntry will use for verification. For example, if
this value is 10, every 10™ case will be verified.

Start
This is the number of the first case in the data file to verify. For example, if this value is 5, and
the Frequency is 10, cases number 5, 15, 25, etc. will be verified. The case number is
determined by the physical order of the cases in the data file. The Start must be less than or
equal to the Frequency value.

Random Start

63

You may check this box instead of specifying a Start value. CSEntry will then choose a
random number for the Start value. The random number will be between 1 and the
Frequency value.

Change Default Text Font

From the Options menu, select Default Text Font.

Current default font is what CSPro will use whenever you add new text to any form.

¢ You can change this by using the Font radio buttons. If you select Choose new default text
font, you can then click on the Choose font button to customize your own font.

¢ If you want to change the font for all text that is already on forms, you must press the Apply to
all items button.

Change Field Font

From the Options menu, select Field Font.

* Press the Font button to change the font in all the field boxes on all the forms. Changing the
size of the font will change the size make the field boxes. You can change the language of the

characters by choosing a different Script in the font dialog box.

¢ Press the Reset button to reset the font in all the field boxes on all the forms to the system
default.

Tip
¢ If you change the field font you may want to also change the default text font and apply it to all
items.

Change Error Sound

When an error occurs during data entry, an error box is shown of the screen and sound (beep,
tone or other sound) is generated.

In order for the sound to be heard:

1 The computer must have sound card, with speaker connected and turned on.

2 The volume on the sound system must be turned on and sufficiently loud to be heard.

3 There must be a sound file associated with the Default Sound(Beep) under Control
Panel/Sound.

To change the sound, go to Control Panel/Sound and change Default Sound(Beep) to a
different sound file.

Add and Modify Procedures

View Logic

64

To toggle between the Logic Window and the Forms Window on the right-hand side of the screen

e Press ; from the View menu check or uncheck View Logic; press Ctrl+L.

From the Logic Window you can create or modify procedures that add logic to your application.
The view is divided into three general areas:

PROC PO& MART

if pO6 mari = 1 and p0S5 age < 12 then
e=errmsgf 10} ;

endif:;

10 Married but lezs than 12 wvears old ;I

M| 4/ ¥/ M Compiler Dutput_} Message R | r |_I

e Top: Text editor, where you write the logic statements

e Bottom: Compiler output tab, where CSPro error messages appear if you have errors in the
logic

* Bottom: Message tab, where you create messages to show the keyer

Click on the forms tree to see the logic which corresponds to that symbol. For example, if you

click on a field you see the logic for only that field. A group or level can also have logic

associated with it.

Click on the forms file node (usually the topmost node on form tree) to see the logic for the whole
application. This is the way to see and enter logic for the global procedures.

Hint: Use the toolbar button or Ctrl+L to switch back and forth between logic view and form
view.

See also: Create and Edit Logic, CSPro language, Order of Executing Data Entry Events, Order
of Executing Batch Edit Events

Create and Edit Logic

You can use the CSPro language to write logic for virtually any part of your data entry
application—a field, form, roster, or level. First make sure the screen has:

* Logic View on the right.
* Forms tree on the left, so you can click on the item for which you want to write logic.

Note: You can see the logic for the whole application by clicking on the form file (usually the
topmost node) on the forms tree.

Example: Programming a message for the keyer

Give a message if there are married people under the age of 12.

65

Click on the "Marital Status" field on the forms tree, P06_MARITAL_STATUS in our example. In
the text editor, at the top of the Logic view, you will see:

PROC PO6_MARI TAL_STATUS

type

i f PO6_MARI TAL_STATUS = 1 and PO5_AGE < 12 then
errmsg("Married but |ess than 12 years ol d");
endi f;

Example: Programming a skip
After the marital status question, skip over age at first marriage if the person is never married.

Click on the "Marital Status" field on the forms tree, PO6_MARITAL_STATUS in our example. In
the text editor, at the top of the Logic view, put:

PROC P06_MARI TAL STATUS

i f PO6_MARI TAL_STATUS = 1 then
skip to P16_WORK _STATUS;

endi f;

Set Compiler Defaults

From within a data entry or batch application, an option is available that determines if variables
must be declared. By default, CSPro sets the set explicit option to ON—meaning that all user-
declared variables must be declared in the PROC GLOBAL section via the numeric or alpha
statement. If they are not, a compiler error message is generated when an undeclared variable is
encountered.

If you do not wish to declare your variables, you can change the behavior to implicit by going to
the Options menu, and selecting the Set Explicit option. This will uncheck the option, allowing
you to create variables "on the fly" simply by referring to them. However, this is not
recommended by the CSPro team. It is much better programming practice to use keep the set
explicit option ON. If variables are explicitly defined, the compiler can detect misspellings of
variable names, which are difficult to find otherwise.

Alternatively, you may include a set explicit command in your program to override the system
setting. See set statement for the command syntax. The following explains the impact of
programmatically setting this switch, as opposed to using the system setting:

System Setting Program Setting Result

v' Set Explicit set explicit; No affect, as program matches system setting
v' Set Explicit set implicit; Program overrides system setting, variables
do not need to be declared
Set Explicit set explicit; Program overrides system setting of implicit—
variables must be declared
Set Explicit set implicit; No affect, as program matches system setting

Note: CSPro defaults to explicit mode, but CSBatch defaults to implicit mode. Therefore, if you
developed your program in CSPro leaving the set explicit option checked, and there were no

66

errors, you can rest assured that your application will run correctly under CSBatch, even though
the mode will be implicit.

(zFormF)
Compile Logic

When CSPro compiles your logic, it checks the logic you have written to see if there are any
errors or warnings. Typical errors including spelling a command incorrectly, not using proper
command syntax, and putting logic in the wrong place. Error messages appear in the panel at
the bottom of the screen and a red dot appears to the left of the line that contains the error.
Typical warning usually involve using commands in questionable ways. Warning messages also
appear in the panel at the bottom of the screen and a yellow dot appears to the left of the line that
contains the warning.

You can choose to compile code for a specific item, or for the entire application. To compile code
for a specific item, simply select that item from the Edit tree. The associated logic for that item

will be displayed in the Logic View. Press E on the toolbar; or from the File menu, select
Compile; or press Ctrl+K. The results of your compile will be displayed in the Compiler Output
area at the bottom of the screen. When you are ready to compile the entire application, select the
Batch Edit icon for the application from the Edit tree. This will display all logic written for the
application in the Logic View. You can then press the compile button or press Ctrl+K.

CSPro always compiles your application when you run the application. If there are errors, you
cannot proceed until the errors are corrected.

Test and Run Applications

Run a Data Entry Application

Pressing @ will launch CSEntry, and allow you to enter data for your application (you can also
launch CSEntry by pressing Ctrl+R, or by selecting Run from the File menu). You will, of course,
want to test the behavior of your data entry application before using it in a production
environment, so this is just a quick way to launch CSEntry.

When your application is ready for production, you will want to launch CSEntry independently of

CSPro as it will use less memory this way. To assistance with this, see Run Production Data
Entry.

Setup a Production System

Installing Data Entry Applications
To install data entry applications on each data entry computer you must:

Install the CSPro Data Entry Operator Software

67

Run the CSPro installation program (setup) on each computer. The installation setup may be
run from diskettes, CDROM, or your network. Choose the "Data Entry Operator (only)" option
during the installation. The setup program will only install the files necessary to perform data
entry. The CSPro components necessary to modify an application will NOT be installed.

Install the CSPro Data Entry Application

Make a folder (directory) on each data entry computer and copy the application files into it.
You can determine which files are in your application by opening the application in CSPro and
clicking on the "Files" tab. You may have to use Ctrl-T to see the physical file names and their
locations as opposed to their descriptive labels. For information about each of these files and
about data entry applications in general, see Data Entry Applications.

Run Production Data Entry

You can customize CSEntry’s behavior for any data entry computer by creating a PFF file. You
can then use the PFF file as a command line parameter for CSEntry.exe (the associated filename
of this executable). For example, if you hame your PFF file "MySurvey.pff", then you can launch
CSEntry by invoking:

C.\Program Fil es\CSPro 2.4\ CSEntry. exe MSurvey. pff

This assumes that CSEntry was installed in the default directory. Your PFF file must have a
".pff"* extension.

You can create a PFF file in one of two ways: either [1] create it yourself using an ASCII editor
(such as Notepad or Wordpad), or [2] simply run CSEntry once, and a PFF file will be
automatically created for you—it will be placed in the same folder as your data entry application,
and it will have the same name as your application, but with a ".pff"* extension instead of ".ent".
For example, if your data entry application was nhamed "MySurvey.ent", the system-generated
PFF would be called "MySurvey.pff".

The following section shows the options available to you for a CSEntry PFF file. Please note that
a PFF file is not case sensitive, so you may use any combination of upper and lower case text.

[Run I nformation]
Versi on=CSPro 2.4

AppType=Entry

[DataEntrylnit]

Qper at or | D=Enper or Arnmando
St art Mode=add

I nteractive=ask
Lock=Verify, Stats

Ful | Scr een=Yes

NoFi | eQpen=Yes

[Files]
Appl i cati on=MyCensus. ent
| nput Dat a=. \ Prov12\ Di st 05. dat

[Ext ernal Fi |l es]
LOOKUP_DCF=.\ Prov12. | up

68

[Par anet er s]
Par amet er =your choice

[Dat aEnt ryl Ds]
Pr ovi nce=12
Di strict=05

The [Run Information] block is required and must appear exactly as shown in the example above.

The [DataEntrylnit] block, as is all its possible entries, is optional. It gives you the opportunity to
choose the following run-time characteristics:

OperatorID=Emperor Armando

"Emperor Armando” will be used as the operator ID for the purposes of logging operator
statistics. If this line is not present but your data entry application has been set to ask for this,
then CSEntry will prompt the operator for one at run time.

StartMode=add

CSEntry will drop immediately into add mode. If this line is not present, one of two things will
occur: either [1] if the data file does not exist, then the operator will be dropped into add
mode; or [2] if the data file does exist, then CSEntry will wait for the operator to choose their
desired mode. (Note that their choices may be constricted due to options indicated in "Lock,"
the next feature). The other two permissible entries are "modify" or "verify".

Lock=Verify,Stats

This option tells CSEntry which modes an operator will not have access to. Therefore, in this
example the operator can not enter Verify mode, nor see data file statistics. This parameter
can be any combination of "Add", "Modify", "Verify", and "Stats", separated by commas.

FullScreen=Yes
CSEntry will open the application in full screen mode, with no case tree on the left.

NoFileOpen=Yes

From within CSEntry, the system will not permit the operator to open another data file if this is
set to "Yes". However, if you fail to name the required files in the PFF file, the operator will,
initially, have to supply them. But once they have been chosen, the operator can not open
another file from within CSEntry.

Interactive=Both,Lock

CSEntry will display both out-of-range and errors generated from the errmsg command in
interactive mode. This setting is locked, so the operator cannot change it. The parameter
"Both" can be replaced with "Errmsg" error message only, "Range" out of range only, "Ask"
operator will be asked what type of messages to display, or "Off" interactive mode disabled.
The parameter "Lock" is optional. If it is not present, the operator can change the setting
using the Options/Interactive Edit Options menu item. "Lock" is ignored for "Off" (always
locked). If the Interactive line is not present, "Ask" is assumed.

The [Files] block is required, as is the "Application" entry within it. "Application=" names the data
entry application you have developed,. "InputData" is optional, and names the data file you will
be creating, modifying, or verifying via this data entry application. If you do not name the data file
to work on, CSEntry will prompt the operator to supply one. If the operator fails to provide one,
CSEntry will not run.

If the [ExternalFiles] block is present, it means that a second dictionary was linked to the data
entry application. In the example above, "LOOKUP_DCF" is the internal (unique) dictionary

69

name, and "Prov12.lup" is the name of the data file which contains the lookup codes. If there is a
second dictionary linked to your application and you fail to name it in your PFF file, the operator
will be prompted to provide it. If the operator fails to do so, CSEntry will not run.

If you would like to pass in a command-line parameter to your data entry program, you would do
so via the [Parameters] block, using the Parameter command. The parameter can be any length,
although the alphanumeric variable that retrieves the value in your program (via the sysparm
function) must be large enough to accommodate it. Once the parameter string is retrieved, it can
be parsed for further usage.

The [DataEntrylDs] block is for use with any persistent IDs you have defined. CSEntry will assign
the specified values to the indicated persistent fields when a new data file is created. This
feature allows automatic definition of persistent fields, such as batch ids. However, if you provide
values and run this on an already-existing data file, and the PFF file values do not match the
values in the data entry file, the PFF values will be ignored. The syntax is as follows:

<uni que-di ct - nane>=<nuneri c- val ue>

Summaries

Data Entry Designer Menu Summary

The following menu selections are available:

Files

New Create a new application.

Open Open an existing application.

Close Close an application.

Save Save an application.

Insert File Insert a file into an existing application.

Drop File Drop a file from an existing application.

Compile Compile the logic in the application.

Run Run the application.
Edit

Undo Undo the most recent change.

Redo Redo the last undo.

Cut Copy selected element to clipboard and delete it.

Copy Copy selected element to clipboard.

Paste Paste element on clipboard to selected location.

Add Form Add a form to the application.

Delete Form Delete a form from the application.

Generate Forms Generate forms using the Data Dictionary.

Delete Delete selected objects.

Find Find text in the procedures.

Find Next Find the next occurrence of text in the procedures.

Replace Replace text with new text in the procedures.
View

Box Toolbar Show or hide box drawing toolbar.

Names in Trees Show names instead of labels in trees.

Full Screen Hide the trees and show full screen view.

View Logic Show or hide procedures in right-hand window.
Options

70

Data Entry

Drag

Default Text Font
Field Font

Set Explicit
Align

Left

Center

Right

Top

Mid

Bottom

Evenly Horizontal
Evenly Vertical

Tools

Text Viewer

Table Viewer

Map Viewer

Retrieve Tables
Tabulate Frequencies
Sort Data

Export Data
Reformat Data
Compare Data
Concatenate Data
Convert Dictionary
Convert Shape to Map

Window

Cascade

Tile Top to Bottom
Tile Side by Side
Help

Help Topics
About

Change the data entry options.

Change the drag options.

Change the default text font settings.

Change the field font settings.

Require declaration of all variable names in logic.

Position to left-most item.

Center items as a group.

Position to right-most item.

Position to top-most item.

Align mid-points of items as a group
Position to bottom-most item.
Space evenly left to right.

Space evenly top to bottom.

View text or data files.

View CSPro tables.

View CSPro thematic maps.

Retrieve tables from a data set.

Tabulate frequency distributions for file contents.
Sort cases based on ids.

Export data in various formats.

Reformat data using two dictionaries.
Compare contents of two similar data files.
Join text files one after the other.

Convert an ISSA or IMPS dictionary to CSPro.
Convert an ESRI shape file to CSPro map file.

Arrange windows in an overlapping fashion.
Arrange windows one above the other.
Arrange windows one beside the other.

Get help on current application.
Get information about the software.

Data Entry Designer Toolbar Summary

The Forms Designer toolbar is displayed across the top of the window, immediately below the
menu bar. The toolbar provides quick mouse access to many of the often-used features found in
the Forms Designer.

Click To

Create a New application.
Open an application.

Save an application.

Compile the logic (code) of your data entry application.

Run the current data entry application (i.e., start up CSEntry).

5 M DEE

Undo the latest changes.

71

= BRhEE EHE BEX EEkE R

Redo the latest changes.

Cut the selected elements to the clipboard.
Copy the selected elements to clipboard.

Paste the contents of the clipboard to the form.

Delete the currently selected item(s).

Find text in logic.

Toggle between selecting item(s) or drawing boxes .

Toggle between the logic view and form view.

Show last Dictionary window.
Show last Forms window.
Show last Batch Edit window.

Show last Cross Tabulation window.

Get Help.

Data Entry Designer Keys Summary

Shortcuts specific to Data Entry Designer

Del Delete currently selected item(s).

Ctrl + Del Delete the currently displayed form.

Ctrl + A Add form to current level.

Ctrl + D Change options for dragging things from dictionary.
Ctrl + E Change options for data entry application.

Ctrl + G Generate a set of forms based on the dictionary.
Ctrl + K Compile code.

Ctrl + L Show or hide procedures.

Ctrl + R Run the data entry application.

F3 Find the next occurrence of specified text.

Up Arrow Move up one line.

Down Arrow Move down one line.

Shift+Up Arrow Scrolls up, multi-selects rows.
Shift+Down Arrow Scrolls down, multi-selects rows.

Page Up Scroll up one screen (if possible).
Page Down Scroll down one screen (if possible).
Shift+Page Up Scrolls up, multi-selecting pages.
Shift+Page Down Scrolls down, multi-selecting pages.

72

Home Scrolls to the beginning of line.

End Scrolls to the end of line.

Shift+Home Selects text from cursor to beginning of line.
Shift+End Selects text from cursor to end of line.
Ctrl+Home Scrolls to the first line of code.

Ctrl+End Scrolls to the last line of code.

Shortcuts common throughout CSPro

Ctrl + C Copy the selection and put it on the Clipboard.
Ctrl + F Find specified text.

Ctrl +H Replace the specified text with different text.
Ctrl + N Create a new document.

Ctrl + O Open an existing document.

Ctrl+S Save the active document.

Ctrl+T Show names instead of labels in tree.
Ctrl+U Full screen.

Ctrl +V Insert Clipboard contents clipboard.

Ctrl + X Cut the selection and put it on the Clipboard.
Ctrl +Y Redo the previous undone action.

Ctrl + 2z Undo last action.

Ctrl + F4 Close the active document.

Alt + F4 Quit the application.
F1 Show help contents and index.

Batch Editing

Introduction to Batch Editing

The Batch Edit Designer module allows you to create and modify batch edit applications. A batch
edit application is used to clean (via editing and imputation) your data files.

After keying or scanning your data, there will be errors in the data file. This is unavoidable, a
combination of human and computer error. It will therefore be necessary to correct the data by
writing a series of edit routines (procedures) to systematically and consistently clean your data
files.

For examples and methodology on how to develop your edit routines, refer to the recently revised
United Nations Handbook on Population and Housing Census Edits.

For information on how to write, debug, and test your edit routines, continue reading.

To create these edit routines, you will create a batch edit application within CSPro, based on the
dictionary (.dcf) that describes your data file(s). If you received this datafile from someone else
and do not have a dictionary that describes it, you will need to create a dictionary before you are
ready to develop programming logic for it.

Editing Concepts

73

Screen Layout

Edit Tree

Edit Order

Edit Logic

Imputation

Static Imputation

Dynamic Imputation (Hot Deck)

Strategies
Finding Errors
Correcting Errors

How to ...
Change Edit Order
Move Around an Application
Manipulate Automatic Reports
Create a Specialized Report
Use Hot Decks
Compile an Application
Run an Application
Interpret Reports
Run Production Batch Edits

Summaries
Menu
Toolbar
Keys

Editing Concepts

Screen Layout

The CSBatch screen is divided into three main work areas: the Tree View, the Logic View, and
the Message View. They are found as follows:

Tree View: the window on the left half of the screen is the standard CSPro tree tab. If you only
have a batch edit application open, at the bottom of this window you will notice three tabs:
"Files", "Dicts", and "Edits". The "Edits" tab will be of primary importance to you.

Logic View: This is the window block on the right half of the screen, in the upper portion. Itis
devoted towards displaying the programming logic for the various edit levels, records, and
items listed in the "Edits" tree tab.

Message View: This is the window block on the right half of the screen, in the lower portion. It is
devoted to messaging. Similar to the Tree View, you have tabs available to you; clicking on
one of them will make the contents of that view active. The "Compiler Output" tab displays
errors found during compilation of your program; or, if the run was successful, it will state
"Compile Successful." The "Message" tab is used to type in error messages you wish to use
in debugging.

Within the Tree View, the "Edits" tab will be the most useful to you. The Logic View displays the

programming logic (if any) for individual edit items. The Message View is where the results of
your code compilation are viewed, and where user-defined messages are viewed and/or created.

74

If you wish to modify the size of any of these three work areas, just place the mouse over one of
the separating bars, grab it, and drag to resize.

See also: Move Around an Application

Edit Tree

When you create a batch edit application, the edit tree will look identical to the dictionary tree; that
is, edit items will be listed as found in the dictionary. However, there are a few distinctions to
make, as follows:

BatchEdit File: ¢ This is the highest level node, i.e., the root node. It is the owner of all code,
which is to say [1] level, record, and item-level code, [2] user-defined functions, and the [3]
global routine.

BatchEdit Level: IE'!- This is the second-tier tree node, just below the root. It has a 1-to-1
correspondence with the same-named dictionary level.

BatchEdit Record : E This is the third-tier tree node, just below its level. It has a 1-to-1
correspondence with the same-named dictionary record.

BatchEdit Item: = This is the terminal, leaf-node; i.e., the lowest accessible level. It has a 1-to-1
correspondence with a dictionary item.

You are free to rename any of the above the uniqgue name via the properties dialog box, but it is
recommended that you retain the original name, so that it is easier for you to see which dictionary
entity is being corrected.

The edit tree represents the order in which the logic associated with each edit item is executed.
For example, review the following edit tree:

ERPZ2 CENSUS 2000 DICTIONARY FF
=T, OUEST

=-@ ID50_EDT

=B PERSOM_EDT

- .o LIMNE
.o PO2_REL
o P03 _SEX
.o P04_AGE
.o PO5_MS

As indicated by the indentation, the preproc for the batch application will be executed before the
preproc for the first level, and the preproc for the level will be executed before the preproc of the
edit record. Finally, at the terminal leaf (the edit item), each items’ preproc and postproc are
executed before executing the postproc for the edit record.

If code has been written for a given edit level, record, or item, a check mark will appear
superimposed on the icon for that entity. This is how, at a quick glance, you can see where you
have placed programming logic. Once one line of code has been written anywhere in the
program, a check mark will appear on the BatchEdit File icon.

You can never delete edit levels, records, or items (i.e., the entries shown on the "Edits" tab).
However, you can reorder edit items or records (though not levels) by dragging them within the
"Edits" tree tab. When selecting a new edit item, the contents of the logic view will change to
display the logic for the selected entity.

75

See also: Edit Logic, Edit Order

Edit Order

Eventually you'll reach the point where you have written edits for many variables and you will
begin to wonder, just how do you control the order of execution? It’'s in the tree. The order of the
items listed in the BatchEdits tree tab shows you the order of logic execution. (If there is no
associated logic for an edit item, then the order is of course not important.)

What if you don't like the order that’'s given? Change it. As mentioned above in Edit Tree, you
can reorder items and records (but not levels) on the edit tree. When developing edit
specifications, the edit of one variable might depend on another edit having already been
completed (say, relationship before sex). If the dictionary wasn’t designed in the order you need,
then when a batch edit application is generated, the order will be incorrect. But you can change
this by a simple drag and drop. Simply grab Relationship with the mouse, and drop it on top of
Sex. The tree order will change to reflect the drag.

Having said all this, there are a few nuances to the editing process that you may wish to note,
specifically with regard to the preprocs and postprocs execution:

1 For BatchEdit items, there is no benefit to writing and maintaining preproc and postproc code
blocks. Because a BatchEdit item is at the lowest level in the order tree, no other code would
be executed in the interim of a preproc and postproc code block. Therefore it is suggested to
simply maintain one code block for each item. If you do not write "preproc" or "postproc”, the
code by default will be in the postproc block. This is the suggested behavior, i.e., accept the
default.

2 If a BatchEdit item is within a record that repeats, the logic will be repeated for each
occurrence. For example, if you have a population record that allows 30 occurrences, the logic
for each of its member items will repeat up to 30 times. Suppose you have a household with
three members: the head, the spouse, and a child. The logic for each data item (such as
relationship, sex, and age) will be executed three times.

3 If arecord repeats, the associated logic for that record will NOT repeat; instead, it will be
executed once and only once. For example, take that population record again that allows 30
occurrences. Whether there are 1 or 5 or 30 people in the household, the associated logic for
the BatchEdit record will execute only once. Therefore, if you have logic that must occur for
each person in the household, we suggest you place that code under the first BatchEdit item in
the record.

4 Logic written for Level 1 will only execute once for a questionnaire/case. Logic written for
Levels 2 or 3 will execute for each node, i.e., for each set of records contained in that level.

5 Finally, logic written at the BatchEdit File node will execute only once for a data file. Therefore,

if you have global variables that you need to initialize, etc., this is the place where that should
take place.

Edit Logic

After creating a new batch edit application, you will see the Edits tree view on your left, with the
root node selected, and the logic view on your right, with two lines of code provided: "PROC
GLOBAL" and "PROC <BatchEdit_Filename>". These two lines of code will always be in your

76

application file. You can delete them, but they will always be regenerated and placed in your file
on open, save, or exit.

There are two types of procedures for each edit item: a preproc and a postproc. By default, if not
specified, logic will always be considered to be in the postproc portion of the edit entity.

When CSBatch begins to evaluate logic for a given item, it will execute the code contained in the
preproc (if present) first. Once finished with that code, it will then proceed to the postproc of the
edit item (again, if present). Usually, there is no need to use both the preproc and postproc
sections, the postproc will suffice. However, there are times when it will make a difference,
especially within an edit record or edit level. Read Edit Order, above, to see why.

Imputation

Imputation refers to the process of providing values for missing, erroneous, or inconsistent
responses. For example if a person’s sex code is invalid (i.e., out of range or otherwise invalid)
or missing; then an appropriate response should be given.

You may decide that for missing data, you'd rather just keep it "missing" and publish your tables
with an extra column (or row) for unknown values. This is a very cumbersome method, however,
as the number of missing values will vary for each data item, and so the number of missing
entries will vary from table to table, making the data difficult to analyze.

Inconsistent responses occur when a response yields am impossible situation with respect to
another response. For example, if a 5-year-old female reports having children, either her age is
wrong, or her fertility data is wrong (i.e., it should be blank). This type of error must be corrected,
as your users will place very little faith in your data quality if this type of condition exists. Nor will
they look too kindly on missing data either. Of course, nothing can correct for bad data, and if
you find that a significant amount of your data is bad (poorly designed questionnaire, inadequate
field procedures, inattentive coders and keyers, etc), you may want to consider whether the data
should be used at all.

Procedures have been developed to provide the missing information, thereby avoiding
discrepancies and the need to determine percentages twice (with and without unknowns). For a
detailed discussion on using imputation and the methods available to you, please refer to the
recently revised United Nations Handbook on Population and Housing Census Edits.

Essentially, two methods of imputation are available: static and dynamic.

Static Imputation

Static imputation means providing a value from a pre-determined set of values. Suppose a
person’s sex is missing or invalid (out of range). If we decide to change the response using static
imputation, there are two basic methods to use: hard-coded or from a cold-deck.

Hard-coded

Using our example above, we would programmatically set age to the value we think it should be.
For example,

PROC GLOBAL
toggl e_sex = 1;

77

PROC SEX
if $ = notappl or not ($ in 1:2) then
$ = toggl e_sex;
toggl e_sex = 3 - toggl e_sex;
endi f;

What we’ve done above is a very primitive form of imputation. Essentially, when we encounter a
bad value for sex, 50 percent of the time they will be made male, and 50 percent of the time they
will be made female. Note that no accommodation was made for other responses; for example, if
there was fertility data present, you may not wish to make this person male. Or maybe this was
an enumeration of a prison where the entire population is male—you would probably not want to
be adding females to this group! So while this method can be used, you need to take in to
account other responses. We attempt do this this in our next method of static imputation, where
we use a cold-deck.

Cold Deck

With the cold deck approach, known information about individuals with similar characteristics
(sex, age, relationship to household head, economic status, etc) is used to determine the 'most
appropriate' response to be used when some piece (or pieces) of related information is invalid.

For example, suppose a person’s age is missing or invalid. We might have a table as follows,

where the row indices represent the person’s sex (1=male, 2=female), and the column indices

refers to the person’s relationship codes (1-5) (this table assumes that the relationship and sex
codes have already been corrected):

(other (non-
(head) (spouse) (child) rel) rel)
1

2 3 4 5
(M 1 35 50 10 41 65
(F) 2 32 48 10 37 68

In the event a female child was found to have a missing age, she would be given the age of 10. If
a female head of the household had a missing age, then her age would be given as 32. This
method is acceptable if you do not need to use it often; that is, if very little of your data is missing
or invalid. Also, if your population is fairly homogeneous (for example if you were correcting for
religion and 90% of the population is Muslim), then this will not result in an unrealistic portrayal of
your country.

However, if you find yourself referring to this table often, or you have a very diverse population
where a few static values do not give an accurate portrayal, then your data will end up skewed.
For these reasons (and others), dynamic imputation is the preferred method.

Dynamic Imputation (Hot Deck)

Dynamic imputation refers to the concept of using constantly changing values for your allocation
routines. It is similar to static (cold-deck) imputation, except that rather than creating a table and
assigning the values once and never changing them, the values are updated with original, correct
values from your population.

Say for example you have a person and their age, relationship, and sex codes appear correct.
You have done consistency checks among them, and everything checks out. You can use that
person’s values to update your cold-deck, making it a hot-deck. Take the table we had under the
cold-deck example:

78

(other (non-
(head) (spouse) (child) rel) rel)
1

2 3 4 5
(M 1 35 50 10 41 65
(F) 2 32 48 10 37 68

If we found a male child whose age was 6, we would update this table yielding the following,
revised table:

(other (non-
(head) (spouse) (child) rel) rel)
1

2 3 4 5
(M 1 35 50 6 41 65
(F) 2 32 48 10 37 68

We would proceed in this way for every person we encountered in the household who had the
correct age, sex, and relationship values. Then, when we need to refer to the table due to a
missing age, we have a much more representative value for the population. For a more detailed
explanation of how to use hot-decks in your program, refer to the CSPro hot-deck example folder
or to the United Nations Handbook on Population and Housing Census Edits.

Strategies

Finding Errors

Before you can correct your errors, you need to know what kind of errors you have. You have
two methods of finding these errors: manually or automatically. Manually checking large
guantities of data is an extremely time-consuming and error-prone task and not recommended.
However automated searches for your errors is quick and, if done properly, a reliable method to
use. If done automatically with CSPro, you can write a Batch Edit application.

Using a Batch Edit application to identify errors is a relatively easy task, though care must be
taken to do so correctly. Improperly identifying errors can waste precious personnel resources,
so a precise set of rules should be developed with subject-matter specialists.

Simple errors such as missing or out-of-range values should always be checked for each
variable. For example, if a person can be no older than 110, then the first past check for errors
might be as follows:

proc AGE
if $in 0:110 then
exit; { the age range is OK nothing else to do }
endi f;
wite ("Person %, has incorrect age: %", curocc (PERSON REC), $);

So what did we do? If a person’s age is in the range 0 to 110 (0 is for infants!), then we’re ok and
the procedure is exited. If not, then the value is either outside this range or missing, in which
case the subsequent write statement will be executed, telling us for for Person N, what their
actual age is.

More involved edits may be needed for other variables. For example, fertility information is only

asked of a female of a certain age. So if fertility information is present, you may wish to confirm
the values of other variables. A possible test could be as follows:

79

PRCC FERTI LI TY
if $in 0:20 then { there are 0-20 children }
if sex = 1 then
wite ("nmale has fertility info present");
exit;
else if sex = 2 then { possibly ok, check woman’s age }
if age < 15 then { 15 = mininumage for fertility }
wite ("woman is too young (%) to have chil dren”
age) ;
endi f;
{ else sex is incorrect, but that’s another problem don’t worry
about here }
endi f;
else if $ = missing then { ok for men, just check wormen }
if sex = 2 then { a problemif the woman is "of age" }
if age >= 15 then
wite ("worman aged %l shoul d have fertility info
present”, age);
endi f;
endi f;
else { fertility value was out of range }
wite ("invalid fertility value (%) found", $);
endi f;

As you see, the complexity of your logic to find (and soon, correct!) errors is up to you. Just be
sure to consider all situations/paths.

Correcting Errors

The purpose of editing is to make the data as representative of the real life situation as possible;
do this by eliminating omissions and invalid entries, and by changing inconsistent entries. Below
are some important principles that should be followed:

e The fewest number of changes should be made to the originally recorded data. You are only
trying to make a record or questionnaire acceptable, not "improve" it, or make it conform to
what you think should be acceptable.

e If you must change a data value, do so only once. If you change a person’s age, then later
find this age doesn’t work for another edit, then you didn’t write the original edit correctly. Go
back and review the first edit.

e For certain items it may be acceptable to have a 'not reported’ category. Thus, in case of an
omission or an inconsistent, impossible, or unreasonable entry, a code for 'not reported' can
be assigned.

e Obvious inconsistencies among the entries should be eliminated.

e Providing corrected values for erroneous or missing items should be supplied by using other
values as a guide; for example, entries for the housing unit, person, or other persons in the
household or comparable group, and always in accordance with specified procedures.

Just as you have two methods available to you when searching for errors, you have two methods
available to you for correcting errors: manually or automatically.

80

Manual correction of a census could take years, and the possibility of human error is great. With
computer editing both time and the possibility of introducing human error is reduced significantly
(just how much depends on how well your logic is written!). The high degree of accuracy and
uniformity in computer editing cannot be obtained in manual editing. In computer editing, range
checks and within-record consistency checks can easily be made, between-record edits can be
done, and unknown information can be allocated (imputed) automatically. If an allocation method
is used, you should strive to retain as much of the original information as possible.

The programmer should plan and design computer edits to inspect the data and have the
computer correct them according to specifications supplied by a subject- matter specialist. It
would most likely be an extension of the original program written to find the errors—when you
reach the point where there is an error, instead of (or in addition to) printing out an error
message, you should now correct it with an appropriate value.

For examples and methodology on how to develop your edit routines, refer to the recently revised
United Nations Handbook on Population and Housing Census Edits.

How to ...

Change Edit Order

By default a new data editing application fixes the order of editing to the order of items in the
dictionary. If new items are added to the dictionary or items are rearranged in the dictionary, the
editing order is determined by the new dictionary arrangement.

To make your own, custom order of the editing items within records, you need to do two things.

1 From the Options menu, select Custom Order.
2 Drag and drop items in the order tree into the order you wish the edits to be performed.

If you rearrange items within a record in the dictionary, the custom order will not change. If you
add new items to a record, the new items will be placed at then end of the record for purposes of
editing.

If you unselect Custom Order, the edit order will return to the order of items in the dictionary.

Moving Around a Batch Application
To move around your batch edit application, select individual items from the "Edit" tree tab. The
Logic View will update to display the programming logic (if any) for that item. If you select the

root of the tree, all logic written for the entire batch edit application is displayed.

For example, suppose you select "age" from the Edits tree tab and there is no associated
programming logic; you will see:

PRCC ACE

in the LogicView. Since there is no logic, "PROC Age" is generated "on-the-fly" and will not be
saved in the .app file. If there was associated logic, you might see something like this:

PROC ACE

81

post proc
if not (AGE in 0:99) then
errmsg ("Invalid age found");
endi f;

Note the code above, by default, would have been placed in the postproc section, and so it was
unnecessary to explicitly state "postproc.”

Manipulate Automatic Reports

During the testing and debugging stages of developing your application, you’ll want to write out a
lot of error messages to help find problem areas, and keep statistics on the number of times
certain code blocks are being executed (or values are being imputed). You may begin to notice
that you're using the same error message in several places. Rather than write out the message
every time it's needed, you can "define" it once, and refer to it whenever needed.

For example, suppose you have the following error message scattered throughout your code:
errmsg ("Current age after inputation is %", age);

Why bother retyping it each time? You can simply define it once and reference it over and over.
Simply do the following:

[1] In the MessageView, select the Message tab. You will see one line that has been generated
for you; it reads: { Message code file generated by CSPro }. Beneath this simply add
your error message (we’ll number it 10):

10 "Current age after imputation is %d"

[2] Then, whenever you want to use this message in your code, simply write (where ‘$’ is a
shorthand notation for the current PROC's variable):

errmsg (10, $);

Besides simplying your work, after you run your program, a nice summary statistic will be
generated for each user-defined error message, listing how often it was used. A sample listing is
shown below:

Nunber Freq Pct. Message text Denom

10 24271 - "sex imputed to %" -

See the "errmsg" command in the helps for a detailed explanation of all the options available to
you.

Create a Specialized Report

We talked in Manipulating Automatic Reports about how to add messages to the automatic report
which is generated after a run. This is great for debugging, but suppose you’ve got to submit a
more user-friendly report to your coworkers or boss, how do you do this?

82

You can control it all via the "write" command—use it to put exactly what you want, where you
want it, in your report. For example, for each questionnaire, you'll want to know the identifying 1D
values. If this was a population census, you'd probably have your levels of geography as your
IDs; Province, District, Village, EA, etc. Using the "errmsg" command, the IDs would be
displayed as follows:

Case [010117100110870031] has 12 nessages (0 E/ 0 W/ 12U}

As you can see, this may be difficult for the non-programmer to decipher. But by using the write
command, you can more clearly display this. One way would be to put the following write
statements in the preproc of the first level (in this way it would only get written out once per
guestionnaire):

PROC QUEST
preproc
Wwite Nk kkkhhkkhrkdkhkrdrx !

(;
wite (" Province: %3d", PROVINCE);
(

wite (" District: %3d", DISTRICT);
wite (" Village : %3d", VILLAGE);
wite (" EA ©usd", EA);
Wlte ("***************");
wite (" "); { blank line }

Results of the run, written to the .wrt file, would be the following (actual numbers will vary
depending on the questionnaire IDs of course!):

khkkkhkkhkkhkkhkkhkkhkk*k

Pr ovi nce: 1
District: 7
Village : 30
EA : 4

KRR S O O

Add additional write statements throughout your program to get the customized report you want!

Use Hot Decks

If you wish to use hot-decks in your application, refer to the example provided in the
Examples\HotDeck directory. For a more detailed explanation of what hot decks are, refer to the
United Nations Handbook on Population and Housing Census Edits.

Set Compiler Defaults

From within a data entry or batch application, an option is available that determines if variables
must be declared. By default, CSPro sets the set explicit option to ON—meaning that all user-
declared variables must be declared in the PROC GLOBAL section via the numeric or alpha
statement. If they are not, a compiler error message is generated when an undeclared variable is
encountered.

If you do not wish to declare your variables, you can change the behavior to implicit by going to

the Options menu, and selecting the Set Explicit option. This will uncheck the option, allowing
you to create variables "on the fly" simply by referring to them. However, this is not

83

recommended by the CSPro team. It is much better programming practice to use keep the set
explicit option ON. If variables are explicitly defined, the compiler can detect misspellings of
variable names, which are difficult to find otherwise.

Alternatively, you may include a set explicit command in your program to override the system
setting. See set statement for the command syntax. The following explains the impact of
programmatically setting this switch, as opposed to using the system setting:

System Setting Program Setting Result

v' Set Explicit set explicit; No affect, as program matches system setting
v' Set Explicit set implicit; Program overrides system setting, variables do
not need to be declared
Set Explicit set explicit; Program overrides system setting of implicit—
variables must be declared
Set Explicit set implicit; No affect, as program matches system setting

Note: CSPro defaults to explicit mode, but CSBatch defaults to implicit mode. Therefore, if you
developed your program in CSPro leaving the set explicit option checked, and there were no
errors, you can rest assured that your application will run correctly under CSBatch, even though
the mode will be implicit.

(zOrderF)

Compile an Application

When CSPro compiles your application, it checks the logic you have written to see if there are
any errors or warnings. Typical errors including spelling a command incorrectly, not using proper
command syntax, and putting logic in the wrong place. Error messages appear in the panel at
the bottom of the screen and a red dot appears to the left of the line that contains the error.
Typical warning usually involve using commands in questionable ways. Warning messages also
appear in the panel at the bottom of the screen and a yellow dot appears to the left of the line that
contains the warning.

You can choose to compile code for a specific item, or for the entire application. To compile code
for a specific item, simply select that item from the Edit tree. The associated logic for that item

will be displayed in the Logic View. Press on the toolbar; or from the File menu, select
Compile; or press Ctrl+K. The results of your compile will be displayed in the Compiler Output
area at the bottom of the screen. When you are ready to compile the entire application, select the
Batch Edit icon for the application from the Edit tree. This will display all logic written for the
application in the Logic View. You can then press the compile button or press Ctrl+K.

CSPro always compiles your application when you run the application. If there are errors, you
cannot proceed until the error are corrected.

Tip

e During code development , you should only compile the logic for an individual Batch Edit
entity. This saves time, because the system does not have to recompile the entire all the
logic. Furthermore, your entire file may not be ready for compilation (i.e., there are unfinished
parts awaiting someone’s input), and hence you would not wish to compile the entire file’s
contents.

84

Run an Application

Press @ on the toolbar; from the File menu, select Run; press Ctrl+R. If you've made changes
since you last compiled, CSPro will first compile your application. If your program compiles ok,
then you will receive the following dialog box:

Define File Aszociations |

Dictionany Marme [rata File Mame
CEMN2000

<Output File:
Write: Files
<Impute Freq File:

<Lizting Files

Cancel | Help |

BatchEdit Filename
This line is required, and asks what data file you wish to run your batch application against. This
data file will not be modified in any way; it will only be opened, read, and closed.

Output File
The output file is where the results of correcting your data will be written. If you are not making
any corrections in your program, then the generated file will be an exact copy of the original
data file. If you are making corrections to your data file, then this will be the corrected data file.
The default file extension is .out, but you can use whatever you'd like. This field is optional;
therefore, if you are making corrections to your data, but forget to specify an output file, no
corrected file will be generated, no corrections will be made.

Write File
If you have any write functions in your program, they will write information to this file. The
default file extension is .wrt, but you can use whatever you'd like. This field is optional;
therefore, if your program contains write statements, but you forget to specify a write file, no file
will be generated. Similarly, if you indicate a write file but your program does not contain any
write statements, no file will be generated.

Impute Freq File
If your program contains any impute statements, the results of this command will be written to
this file. The default file extension is .frg, but you can use whatever you'd like. This field is
optional; therefore, if your program contains impute commands, but you forget to specify a
frequency file, no file will be generated. Similarly, if you indicate a frequency file but your
program does not contain any impute commands, no file will be generated.

Listing File
This line is required, and asks you what file you'd like to write the results of the run to. Results
from errmsg functions will be written here. This file will always be generated, regardless of
whether your program included errmsg commands.

85

After specifying your file(s), a progress dialog bar will be displayed as CSBatch works its way
through your data file. If you choose to view the details of the run (just press the "Details" button),
you'll get the following dialog:

Caze D
(15051420051 0540741
Fecords Read: 26228

—Meszages Ignaored
Iz 43688
Inknown W arning 1]
Erazed Error]
Total Total 43688
Level | Input Caze | Bad Struct | Level Post |
1 4333 4333

After the run is completed, TextViewer will be launched to display the generated listing (.Ist) file.
If a write (.wrt) or frequency (.frq) file was generated, then they will also be loaded into
TextViewer for display; to rotate between the various files, select the "Window" option from
TextViewer, and choose from among the files listed at the bottom.

If TextViewer was already running when you launched your application, it will be refreshed with
the latest run results.

Interpret Reports

See the explanation given under running your BatchEdit application .

Run Production Batch Edits

You can customize CSBatch’s behavior by creating a PFF file. You can then use the PFF file as
a command line parameter for CSBatch.exe. For example, if you name your PFF file
"MyEdits.pff", then you can launch CSBatch with this application by invoking:

C.\Program Fil es\CSPro 2.4\ CSBatch.exe MEdits. pff

This assumes that CSBatch was installed in the default directory. Your PFF file must have a
".pff"* extension.

You can create a PFF file in one of two ways: either [1] create it yourself using an ASCII editor
(such as Notepad or Wordpad), or [2] simply run CSBatch once, and a PFF file will be
automatically created for you—it will be placed in the same folder as your batch application, and it
will have the same name as your application, but with a ".pff" extension instead of ".bch". For

86

example, if your batch application was named "MyEdits.bch", the system-generated PFF would
be called "MyEdits.pff".

The following section shows the options available to you in a CSBatch PFF file. Please note that
a PFF file is not case sensitive, so you may use any combination of upper and lower case text.

[Run I nformation]
Ver si on=CSPro 2.4
AppType=Bat ch

[Files]
Application=.\MEdit.bch

| nput Dat a=. \ p12d05. dat

Qut put Dat a=. \ p12d05e. dat
Listing=.\MWEdit.|st
WiteData=.\Vi ewe. dat

| mput eFregs=.\MyEdi t.freq. | st

[Ext ernal Fil es]
LOOKUP_DCF=.\ Prov12. | up

[Par anet er s]

Vi ewLi sti ng=Al ways

Vi ewResul t s=Yes

Par amet er =your choice

The [Run Information] block is required and must appear exactly as shown in the example above.

The [Files] block is required and defines all files used in the batch run. A description of the files is
as follows:

e Application= the batch edit application you created

¢ InputData= the data file that the batch edit program will run on; this file will not be modified
during the run

e OutputData= the revised input data file will be saved as this file

e Listing= a report of the batch operation

e WriteData= if there is one or more write statements in your batch program, their text will be
written here

* ImputeFregs= if you have any impute statements in your batch program, their results will be
written here

If the [ExternalFiles] block is present, it means that a second dictionary was linked to the data
entry application. In the example above, "LOOKUP_DCF" is the internal (unique) dictionary
name, and "Prov12.lup" is the name of the data file which contains the lookup codes. If there is a
second dictionary linked to your application and you fail to name it in your PFF file, the operator
will be prompted to provide it. If the operator fails to do so, CSEntry will not run.

The [Parameters] block is optional. This section defines parameters for the batch run.
ViewListing determines whether you see the batch run report. If this entry is missing or set to
ViewListing=Always, then you will see the generated report. Other available options are
"OnError", in which case you will see the report listing only if an error occurred during the run, or
"Never", in which case you will never be shown the generated report.

87

ViewResults determines whether or not the write or impute file(s) are displayed with TextViewer
at the end of the run. The available choices are Yes or No. If the "ViewResults=" entry is
missing, the resultant data file(s) will be displayed by default. For more information on these files,

see Run an Application.

Parameter allows you to pass in an alpha-numeric string to your program. The parameter can be
any length, although the alphanumeric string that retrieves the value in your program (via the
sysparm function) must be large enough to accommodate it. Once the parameter string is
retrieved, it can be parsed for further usage.

Summaries

Batch Edit Menu Summary

Files
New
Open
Close
Save
Insert File
Drop File
Compile
Run

Edit
Undo
Redo
Cut
Copy
Paste
Properties
Find
Find Next
Replace

Options
Custom Order
Set Explicit

View
Names in Trees
Full Screen

Tools
Text Viewer
Table Viewer
Map Viewer
Retrieve Tables
Tabulate Frequencies
Sort Data
Export Data
Reformat Data
Compare Data
Concatenate Data
Convert Dictionary
Convert Shape to Map

88

Create a new application.

Open an existing application.

Close an application.

Save an application.

Insert a file into an existing application (from Files tree).
Drop a file from an existing application (from Files tree).
Compile the logic in the application.

Run the application.

Undo latest cut/copy/paste operations.

Redo the latest undo operations.

Cut logic and place it on the clipboard.

Copy logic and place it on the clipboard.

Paste logic from the clipboard.

Show and modify properties of items in the order tree.
Find text in the logic.

Find the next occurrence of text in the logic.

Replace text with new text in the logic.

Allow user defined order of editing.
Require declaration of all variable names in logic.

Show names instead of labels in trees.
Hide the trees and show full screen view.

View text or data files.

View CSPro tables.

View CSPro thematic maps.

Retrieve tables from a data set.

Tabulate frequency distributions for file contents.
Sort cases based on ids.

Export data in various formats.

Reformat data using two dictionaries.
Compare contents of two similar data files.
Join text files one after the other.

Convert an ISSA or IMPS dictionary to CSPro.
Convert an ESRI shape file to CSPro map file.

Window

Cascade Arrange windows in an overlapping fashion.

Tile Top to Bottom Arrange windows one above the other.

Tile Side by Side Arrange windows one beside the other.
Help

Help Topics Get help on current application.

About Get information about the software.

Batch Edit Toolbar Summary

The Edit Designer toolbar is displayed across the top of the window, immediately below the menu

bar. The toolbar provides quick mouse access to many of the often-used features found in the

Edit Designer.

Click

= BhEs b FEEE E He DuE

To

Create a New application
Open an application

Save an application

Compile the logic (code) of your application

Run the current batch edit application

Undo the latest text changes.

Redo the latest text changes.

Removes the currently selected text
Copies the current selection to the clipboard
Pastes the current contents of the clipboard to the cursor position

Find text in the logic

Launch Text Viewer

Show last Dictionary window.
Show last Forms window.
Show last Batch Edit window.

Show last Cross Tabulation window.

Get Help.

Batch Edit Keys Summary

89

Shortcuts specific to Batch Edit Designer
Del Delete currently selected item(s).

Ctrl + K Compile code.
Ctrl +R Run the data entry application.

F3 Find the next occurrence of specified text.
Up Arrow Move up one line.
Down Arrow Move down one line.

Shift+Up Arrow Scrolls up, multi-selects rows.
Shift+Down Arrow Scrolls down, multi-selects rows.

Page Up Scroll up one screen (if possible).
Page Down Scroll down one screen (if possible).
Shift+Page Up Scrolls up, multi-selecting pages.
Shift+Page Down Scrolls down, multi-selecting pages.

Home Scrolls to the beginning of line.

End Scrolls to the end of line.

Shift+Home Selects text from cursor to beginning of line.
Shift+End Selects text from cursor to end of line.
Ctrl+Home Scrolls to the first line of code.

Ctrl+End Scrolls to the last line of code.

Shortcuts common throughout CSPro

Ctrl +C Copy the selection and put it on the Clipboard.
Ctrl + F Find specified text.

Ctrl+H Replace the specified text with different text.
Ctrl+N Create a new document.

Ctrl + O Open an existing document.

Ctrl +S Save the active document.

Ctrl+T Show names instead of labels in tree.
Ctrl + U Full screen.

Ctrl +V Insert Clipboard contents clipboard.

Ctrl + X Cut the selection and put it on the Clipboard.
Ctrl +Y Redo the previous undone action.

Ctrl+Zz Undo last action.

Ctrl + F4 Close the active document.

Alt + F4 Quit the application.
F1 Show help contents and index.

Cross Tabulation

Introduction to Cross Tabulation

90

The Cross Tabulation module allows you to tabulate data quickly and easily.

Cross Tabulation Concepts
Area Processing

Strategies
Creating a frequency distribution
Creating a cross tabulation

How to ...
Create a table
Tabulate items with multiple occurrences
Define a universe
Change tabulation parameter
Include percents
Handle undefined values
Tabulate values and/or weights
Tabulate by geographic area
Create an area names file
Change the table title
Add a table
Insert a table
Modify a table
Delete a table
Run a tabulation
Create a thematic map of results
Select table cells
Copy all or part of a table
Save tables
Print tables

Cross Tabulation Concepts

Area Processing

The Area Processing feature groups table data according to areas that you define. For example,
if you are producing tables for industries, you may want to output the data according to industry
type (Agriculture, Mining, Fishing, etc.). One of the most common uses of area processing is for
geography. Whatever you choose to use for your area, these Area IDs must be based on the
Questionnaire IDs for the records you wish to tabulate. Area processing is in addition to any
row/column items selected.

To use area processing you must have done the following:

1. Created an area names file (. annm
2. Selected one or more Area IDs from the Area IDs dialog box

For example, suppose we wish to perform geographic area processing for our top-most units of
geography, which are Province and District (choose them in the Area IDs dialog box). Each
cross-tabulation will be repeated for each Province and District in the data file. In addition, a
summary entry [Total] will be shown for the entire data file. The cross-tabulation will be displayed
in the following order:

91

Total

Province 1
District 1 (of Province 1)
District 2 (of Province 1)
District 3 (of Province 1)

Province 2
District 1 (of Province 2)
District 2 (of Province 2)
District 3 (of Province 2)

Area Processing will apply to all tables in your application.

Strategies

Creating a Frequency Distribution

A frequency tabulation shows the distribution of values in a data file for a particular item in the
data dictionary.

* You can get a frequency distribution for any item by specifying it as the only row item with no
column items.

¢ CrossTab automatically shows cumulative values for frequency distributions.
¢ Frequencies can have a Value and/or a Weight.
* Frequencies can have a Universe.

e Use Total or Column to get Percents.

Creating a Cross Tabulation
Getting the Basic Row/Column Variables Set
1. Select the Dictionaries [Dicts] tab to make the dictionary file structure visible.

2. Expand the tree until the item(s) you wish to use for a row or column variable appears on the
tree.

3. Drag the desired dictionary item and drop it on the table. Where you drop it on the table will
determine whether it is used as a row or column variable. Imagine a diagonal line drawn from
the top left corner of your table to the bottom right corner (forming a lower left and upper right
triangle). If you drop the item in the lower triangle, the item will become a row item. If you
drop it in the upper triangle, it will become a column item.

4. You can repeat Step 3 for a total of two items (or subitems or value sets) per row and two
items per column.

92

5. To delete a row/column variable, right-click in the side/top heading area and choose the
variable to delete. If you have more than one row/column variable, you must right-click over the
variable itself.

Optional Definitions

1. Define the Universe for the table.

2. Define the Area for the table (required if you plan on creating a map from your table).

3. Select the Value Item you want to tabulate.

4. Select the Weight Item.

5. Modify the Title if desired, or use the one CrossTab automatically generates for you.

Tips

¢ Click here to discover how selecting an item as a row or column variable impacts the table
layout.

¢ You can get a frequency distribution for any item by specifying it as the only row item with no
column items.

* When two variables are selected for the same dimension (row or column), the first one

selected becomes the independent variable and the second one becomes the dependent
variable. (See the discussion on row/column variables for more details.)

How to ...

Create a Table

Row variables are those dictionary items or value sets which appear in the rows of the table.
Column variables are those dictionary items or value sets which appear in the columns of the
table. Every table must have at least one row or column variable specified; any given table can
have a maximum of two row variables and two column variables. The number and disposition of
row and column variables will affect the type of table generated.

1 Row/0 Column Variables

If a table consists of one row variable and no column variables, the system will produce a
frequency distribution, with the tabulation categories in the rows of the table, the frequency counts
in the first column of the table, and the cumulative counts in the second column of the table.

0 Row/1 Column Variable

If a table consists of no row variables and one column variable, the system will produce a table
with the tabulation categories in the columns and totals in the single row of the table.

1 Row/1 Column Variable
If a table consists of one row variable and one column variable, the system will produce a normal
cross-tabulation, with the tabulation categories of each variable in row or column, as appropriate.

Totals will always appear in the left-most column and in the top-most row.

2 Row/Column Variables

93

When a table is designed with two variables or value sets in the row and/or column, one of each
pair is considered to be the independent [major] variable, and the other is considered to be the
dependent [minor] variable. The tabulation categories of the dependent variable appear nested
within the categories of the independent variable. Totals for a dependent variable appear as the
topmost row or left-most column within each tabulation category of its independent variable.

Because there are effectively no limits on the number of rows and columns in a table, the
combination of two variables/value sets can produce tabulations which will be extremely difficult
to view and to understand. Users should give careful thought to the placement of variables and
value sets in rows and columns, particularly when one or more of the items has a large number of
tabulation categories. It is almost always easier to manipulate tables with large numbers of rows
than those with the same number of columns.

Whenever the area function is invoked for a table set, the area levels are included as additional
row categories within which the other row variables are displayed.

Tabulate Items with Multiple Occurrences

If an item used as a row or column variable is defined as having two or more occurrences, the
following conditions apply:

1. If the parent item [i.e., the one described as occurring n times] is dragged to the table as a row
or column variable, the variable name will be shown without parentheses.

2. If one of the occurrences of an item is dragged over to the table as a row or column variable,
the variable name will be shown with a number in parentheses.

For example, Myl t emcontains two occurrences, Myl t en(1) and Myl tenm(2) . If Myl t em(the
parent item) is dragged from the dictionary tree to the table as a row or column variable, no
parentheses will appear with the name Myl t emin the table heading because no specific
occurrence of Myl t emwas requested. However, if Myl t en(1) is dragged from the dictionary
tree to the table, then the item name Myl t emwill be shown with the identifying number in
parentheses—MyI t en(1) —because the user selected a specific instance [occurrence] of the
variable.

Tips

¢ If you choose an item with occurrences as a row or column variable, all occurrences of that
item will be tabulated across all corresponding records in the data file. For example, if you
choose Myl tem Myl tem(1) and Myl t em(2) would both be tabulated across all records.

¢ If you choose a specific occurrence of an item as a row or column variable (e.g., Myl t en(2)),
only that occurrence will be tabulated across all corresponding records.

* You may also use items with occurrences as the value or weight item. If no occurrence
number is specified by the user, the first occurrence will be used.

Define a Universe

When you define a universe, CrossTab will only tabulate data records in the questionnaires that
meet the conditions stipulated by you. A universe works like a filter, as the tables produced use

94

only a subset of the data file's records. Therefore, values in the table may be less than they
would be with no universe specified, since the universe restricts the data available for tabulation.
Note that each table has its own Universe definition.

To define a universe:

1.

2.

Select the Dictionaries [Dicts] tab to make the dictionary file structure visible.

Expand the tree until the item(s) you want to use are visible in the tree.

. Click the E button to launch the Universe dialog box. (You can also press Alt+U or select

the Edit menu item, then Universe.)

. The first time the universe is launched for a table, the Item cell will be empty. From the

dictionary tree, drag the desired item (e.g., Age) and drop it in to the cell marked Item.

. Now select a relationship (=, <>, >, >=, <, <=) value.

. Select a value from the drop-down box, or type in a value. If you want a range of values, rather

than a single value, type in the lower and upper bounds separated by a colon (e.g., 12: 49).

Examples:

To restrict your table to females of reproductive age, you might state:

Fenmnl e
12: 49

Sex
AND Age

To restrict your table to heads of households who are economically active, you might state:

Rel ati on = Head
AND Econ_Active = YES

Tips

You may enter several conditions using the and / or.

You can add parentheses to modify the order of evaluation of the conditions.

You can Add, Insert, or Delete a condition by using the buttons with the same names.
You can apply a universe to all the tables, by pressing the Apply to All Tables button.

Change Tabulation Parameters

In addition to using Area Processing and Universe statements, there are several other ways to
customize your tabulation results. Most of these options apply only to the current table. The
three option areas are the following:

Percent

In addition to the quantitative numbers generated in your tabulations, you can choose to show
the distribution of values for an item as a percentage of either row or column totals, or as a
percentage of the table total. You can also choose to show values only as percentages and
suppress the actual numbers. This is useful when you have a small data set and prefer not to
display values which might identify individual cases.

95

¢ Undefined

This section deals with values in the data file. Two options will help you identify errors in your
unedited data files. A third option, when selected, changes the order in which rounding and
summing take place when decimal weights are used in a tabulation.

¢ Value/Weights

With this option you can specify either a data item or an actual numeric value to be used as a
weighting factor during tabulation.

Include Percents

This option is located at the top of the Parameters dialog box.

Choosing any of the options except None, CrossTab will automatically generate percent columns
in your table. Select one of the radio buttons in the box labeled Percent. If the radio button is
anything other than None, you may also check the Percents only box. The following options are
available:

* None: No percents will be generated for this table.

* Total: CrossTab will add an extra column next to each counts column. The value in each cell
of these columns is calculated as the corresponding count divided by the grand total of the
table. The percent cells corresponding to all non-total counts in the entire table will add up to
100.0 (though the sum may not equal 100 due to rounding).

* Row: CrossTab will add an extra column next to each counts column. The value in each cell
of these columns is calculated as the corresponding count divided by the total for that row of
the table. The percent cells across each row will add up to 100.0 (though the sum may not
equal 100 due to rounding). If there are no column items selected, this setting has no effect.

e Column: CrossTab will add an extra column next to each counts column. The value in each
cell of these columns is calculated as the corresponding count divided by the total for that
column of the table. The percent cells down each column will add up to 100.0 (though the
sum may not equal 100 due to rounding).

¢ Percents only: The table generated from this selection will depend on whether you chose the
Total, Row, or Column box. No numbers will appear, only percentages.

Handle Undefined Values
To Include Undefined Row and Column Values

When this setting is used [the box is checked], CrossTab will add an extra row (if there are row
items selected) and an extra column (if there are column items selected) entitled Undefined.
Crosstab tabulates into this row and/or column whenever it finds a value in the data file that is not
one of the values listed for that item in the data dictionary. For example, suppose you are using
Sex as a column variable. Sex has a valid range of 1 (male) or 2 (female). If during tabulation a
value of 3 is found for this item, the Undefined column for this variable would be incremented.

Tips

96

* You can use this option to identify errors in unedited data files.
* If these counts are very high, it may indicate an error in the data dictionary.
* To help you find the error, use the Dump Undefined option.

Dump Undefined

This feature takes the include undefined row and column option one step further. Rather than
merely showing the number of times an undefined data value was encountered, Dump
Undefined will point directly to the record(s) containing these undefined values by creating a text
window listing the record number and value of each item in question, allowing you to easily locate
the entry in error. When selected, this option will be valid for all tables in the tabulation.

When tabulating data, an undefined value is any value not included in the data dictionary as
valid for a specific item. Hence, if the . dcf specified for tabulation includes the following
definition for the field Sex:

Val ue Label From
Mal e 1
Fenmnl e 2

If (for whatever reason) any value other than 1 or 2 appears in this field in any record in the data
file, it will be trapped as an error when the Dump Undefined option is active. The record number
(sequential position of this record within the data file) and questionnaire identification (fields
selected as Questionnaire IDs in the data dictionary) will be displayed to help the user locate the
item in question.

Tabulate Values and/or Weights

This section can be found at the bottom of the Parameters dialog box.
To Tabulate a Value

If you use a value item, the actual numeric value of that item for the current record in the data file
will be added to the appropriate cell during tabulation. A value item usually represents a quantity
of some sort. For example, if you wish to tabulate farm acreage by Type of Farm and Region,
you might choose Region as the row item, Type of Farm as the column item, and Number of
Acres as the value item.

If you leave the value item blank, a value of 1 will be added into the appropriate cell during
tabulation. This is useful for obtaining counts. In the above example, if you wish to tabulate the
number of farms by Type of Farm and Region, leave the value item blank.

To use an item as a tabulation value, drag the desired item from the dictionary tree to the Value
entry in the dialog box.

Weighted Tabulations

If you choose a weight item and no value item, the actual numeric value of the weight item in the
data file will be added into the appropriate cell during tabulation (thus the result is the same as if
you used the item as a value with no weighting). If you choose a weight item and a value item,
CrossTab will multiply together the actual values of these two items for the current record and
add the result into the appropriate cell during tabulation.

97

To use an item as a tabulation weight, drag the desired item from the dictionary tree to the
Weight entry in the dialog box.

Tabulate by Geographic Area

This dialog allows you to select the Questionnaire IDs to be used for area processing, as well as
to specify the area names file.

3 Select one or more Questionnaire IDs from the left box (to select multiple items, hold down the
Ctrl key when you make your selections).

4 Click &l to add the Questionnaire IDs to the Area IDs list.
5 Decide whether to show or not show areas where no data are tallied.

6 Specify the name of the Area Names file for these area levels. For CSPro, this file must have
the extension . anm If you have IMPS 3.1 or an earlier version (the file will have an . ar a

Corvert fram IMPS 3.1 |

extension), then use the convert feature by clicking on

Tips

* If you no longer need a specific Area ID, select the ID and press Ml to delete it from
the Area IDs list.

¢ You can launch the Area IDs dialog by pressing Ctrl+A.

¢ Alternatively, you can also launch the Area IDs dialog by selecting Edit from the menu bar,

then R.

Create an Area Names File
e The Area Names File is a text file that you can create using any text editor or word processor.

¢ [t defines the levels of geography and assigns text names to the numeric codes for each
geographic unit.

* ltisidentical to the IMPS area names file ((ANM).

See also: Area Names File (LANM)

Change the Table Title

CrossTab generates a title for each table based on the Row Items, Column Items, Value,
Weight, and Universe statements in use, as well as the Percents only option. Every time you
change any of these, CrossTab modifies the title accordingly.

If, however, you would like to use a title of your own making, rather than the one generated by

CrossTab, you can choose to Lock the title. Do this by checking the box found in the Table Title
dialog box.

98

You can unlock the title at any time. However, when you do, be aware that if you have modified
the table definition since you locked it, CSPro will ask you if you want to reset the title—that is, if
you want to use the CSPro-generated title, answer Yes; if you want to retain the current title,
answer No. If you don't reset the title but later modify the table definitions, be aware that the title
will change (since it is no longer locked).

To modify the table title, either right-click on the table cell containing the title, or select Edit from
the menubar and then select Modify Title.

Add a Table

Any table added to an existing table set will always be placed after the last existing table. If you
want a new table to appear in any other position in the table set, you must insert the table.

. =] . .
To add a new table simply press the Add button on the toolbar. You'll notice a new tab is
created with the name Tabl e # (where # represents the number of the table—if this is the 5th
table in your table set, it will initially be named Tabl e 5).

Finish the definition of the added table by adding dictionary items and specifying any universe
definitions or other tabulation parameters desired.

Tips
* You can also add a table by right-clicking anywhere in a table and selecting Add Table from

the pop-up menu.
» Alternatively, you can add a table by selecting the Edit menu, then typing A to add.

Insert a Table

You can insert a table in one of the following three ways:

¢ Click on the icon.

¢ Right-click anywhere in a table and select Insert Table from the pop-up menu.
¢ Select the Edit menu, then typing | to insert.

Any table inserted into the existing table set will always be placed before the currently-displayed
table. You'll notice a new tab is created with the name Tabl e # (where # represents the number
of the table—if this is the 5th table in your table set, it will initially be named Tabl e 5). If you're
already on the first table, it will become the new Table 1 and move the rest down.

Finish the definition of the inserted table by adding dictionary items and specifying any universe
definitions or other tabulation parameters desired.

Modify a Table

You can modify a table in a number of ways, such as:

 altering the title heading
¢ changing the universe definition

99

* changing the parameters of an existing tabulation.
 shifting row/column variables (see Tips below) or
e removing row/column variables (see Tips below)

To make modifications to a table, select the desired table (from either the left-hand view table tree
tab, or from the right-hand view table tabs along the bottom) and proceed as desired. When
finished, make sure you save the table specification file so the changes will be permanently
recorded.

Tips

* To exchange a row heading for a column heading, simply use the drag-and-drop method. For
example, if you want to make the row heading Sex (with its value set of Mal e and Fenal e) a
column heading instead, drag one of its value set items and drop it in the column heading
area.

e Toremove an item (i.e., one of the row or column headings) from a table, drag any of the
item's value categories back on to the dictionary tree—drop it anywhere—and it will be

removed from the table. You can also right-click over any of the value categories and select
Delete from the pop-up menu.

Delete a Table

The table that is currently on view in the right-hand portion of your screen is always the one
affected when you choose to delete.

Select the table you would like to remove by either:

* choosing it from the left-hand view table tree tab; or
e using the right-hand view table tabs along the bottom

Delete the table by either:

e Choosing Edit from the menubar, and then select Delete; or

¢ Pressing the toolbar's delete button

Answer Yes to the delete prompt if you wish to proceed.

Run a Tabulation

Once you have finished defining your table(s), you are ready to run them against your data files to
produce the real tables (i.e., a file with extension . t bw).

1. Press the Run Tabulation @ button.

2. You may be asked to save tables from a previous run.
3. Select the data file(s) you want to tabulate.

4. The results of the tabulation [the tables] will be shown.

Tips
You can also:

¢ type Ctrl+R to run the tabulation.

100

* tabulate multiple files in a single run.
* speed up identification of errors in your data file by using the Dump Undefined option.

Tabulating a Single Data File

When you're ready to produce your tables, do the following:

1. Press the Run Tabulation @ button.

2. Navigate to the subdirectory that contains your data files.
3. Select the desired data file.

4. Press the Open key and the tables will be produced!

Tabulating Multiple Data Files

. Press the Run Tabulation @ button

. Navigate to the subdirectory that contains your data files.
Hold down the Ctrl key while selecting your data files (they must all be in the same directory
[folder]). Choose one of two options:

WN P

¢ Produce table(s) for all data files together:
This is equivalent to first concatenating all the data files, then running the tabulation on this
single (concatenated) file. (Note: The data files will not actually be concatenated on your
disk!) One single table set (i.e., file with extension . t bw) will be produced. This is useful
when the data you wish to tabulate are split among several physical files.

¢ Produce table(s) for each data file:
This is equivalent to running the same tabulations separately on each data file. One table set
(i.e., file with extension . t bw) will be produced for each data file. This option avoids having to
run each data file one by one. You can tabulate up to 30 files at once using this method. As
more than one table set is generated with this selection, Table Viewer will be launched to
display the tabulation results.

4. Press OK when ready to tabulate.

Create a Thematic Map of Results
To Generate a Map from CrossTab
1. Produce a table using Area Processing from CrossTab.

2. When the finished table appears, click on the cell that represents the variable you wish to map.

3. Click on [the MapViewer icon, located on the toolbar].

4. Select the corresponding map file from the dialog box. You can choose between an . ndf ,
. mpc, or . map file.

5. MapViewer will be launched and a thematic map, representing the data you selected, will
appear.

101

To Create a Map Data File (. ndf) from CrossTab

You can import several tabulated variables into MapViewer and then save them all in the same
map data file (extension . mdf). This is an excellent way to build your own collection of mapped
variables as a data dissemination tool. To create an . ndf file:

1. Generate the first variable as described above using an . npc file (rather than an . ndf or
. map file).

2. Switch back to CrossTab (i.e., select it from the Windows 95 task bar or use Alt+Tab). Do not
close down MapViewer.

3. Generate the next variable from CrossTab as in steps 1-5 above. MapViewer will now hold
both variables (look at MapViewer's Variable drop-down box).

4. Repeat this process for as many variables as you would like to map. You can map different
variables from different tables, as long as they share the same . npc file.

5. Save the map data file (extension will be . ndf).

6. Later you may add more variables to this map data file by loading this . ndf in the MapViewer
the next time you wish to map.

Select Table Cells

To select table cells ...

1 Move the mouse pointer to the upper left-hand corner of the cells you wish to select.

2 Press the left mouse button and hold it down while you drag the mouse across the cells you
want to select. The cells will change color to indicate that they have been selected.

3 Then release the mouse button. The selected cells and their heads and stubs are highlighted.

Tips

* To select additional cells, hold the Ctrl key down as you make additional selections.

* If you are selecting several pages of material, you can press the Page Down or Ctrl-End keys
while holding the mouse button down.

¢ If you drag the mouse outside of the cell area, the table will automatically scroll and continue
the block.

To select ALL cells ...

From the Edit menu, select Select All; or press Ctrl+A.

To Deselect cells ...

Press the Esc key; or from the Edit menu, select Cancel Selection.

Copy All or Part of a Table

102

1 Select the table cells you want to copy. To copy the entire table, select from Edit menu,
Select All. The corresponding boxheads and stubs of selected cells are also selected.

Sz
2 Click on the toolbar; or from the Edit menu, select Copy; or press Ctrl+C.
3 Paste the cells you copied directly into a word processor or spreadsheet. They appear in
tabular format.

See also: Save tables

Save Tables
To save entire tables ...

7 Make sure that none of the table's cells are currently selected (press Esc if they are).

8 Click on the toolbar; or from the File menu, select Save As; or press Ctrl+S.

9 If your tables file has multiple tables defined within it, a dialog box will appear which lets you
pick which tables to save. Select all the tables that you would like to save in one file.

10 A Save As dialog box lets you enter the file directory (folder), file name and file type.

To save part of atable ...

1 Select table cells you want to save. The corresponding boxheads and stubs of selected cells
are also selected.

2 Click on the toolbar; or from the File menu, select Save As; or press Ctrl+S.

3 A dialog box will appear asking if you want to save the whole table or just the selected parts.
Choose Selection and press OK.

4 A Save As dialog box lets you enter the file directory (folder), file name and file type.

File types ...

CSPro Tables (*.tbw) lets you save tables so they can be used later by the CSPro
Table Viewer.

Rich Text Format (*.rtf) lets you save your tables so they can be used later by word
processors such as Word or WordPerfect. You can open the
(*.rtf) in your word processor, and the table will appear in the
word processor's table format.

HTML files (*.htm) lets you save your tables so they can be later incorporated into

Internet applications in table format.
ASCII tab delimited (*.other) lets you save your tables so they can be used later by
spreadsheet such as Excel, Quattro Pro or Lotus 1- 2- 3. You

can open the file in your spreadsheet, and the table will appear
as a matrix of cells with columns lined up as you would expect.

Print Tables

To print entire tables ...

103

1 Make sure that none of the table's cells are currently selected (press Esc if they are).

2 Click on the toolbar; or from the File menu, select Print; or press Ctrl+P.

3 If your tables file has multiple tables defined within it, a dialog box will appear which lets you
pick which tables to print. Select all the tables that you would like to print at once.

4 A Print dialog box lets you select the printer, the page range, and the number of copies.

To save part of atable ...

1 Select table cells you want to print. The corresponding boxheads and stubs of selected cells
are also selected.

2 Click on the toolbar; or from the File menu, select Print; or press Ctrl+P.

3 A dialog box will appear asking if you want to print the whole table or just the selected parts.
Choose Selection and press OK.

4 A Print dialog box lets you select the printer, the page range, and the number of copies.

To preview the printing of tables ...

Click on the tool bar; or from the File menu, select Print Preview.

Summaries

Cross Tabulation Menu Summary

The Cross Tabulation menu is displayed across the top of the window. It provides access to most

features used in Cross Tabulation. The following menu options are available whenever the right-
hand screen is displaying tables.

Print Preview
Print

104

Files
New Create a new application.
Open Open an existing application.
Close Close an application.
Save Save an application.
Save Tables Save current table results in a file.
Insert File Insert a file into an existing application.
Drop File Drop a file from an existing application.
Run Run the application.
Page Setup Change headers, footers, and margins for printed pages.
Print Setup Change orientation and paper size for printed pages.

Preview the printed pages.
Print all or part of a document.

Edit
Add Table Add a table at the end.
Insert Table Insert a table at the current location.
Delete Table Delete the current table.
Copy Copy selected parts of the table to the clipboard.
Select All Select the entire table.
Cancel Selection Cancel the currently selected cells.
Modify Title Edit the table title.

Universe
Parameters
Area
View
Names in Trees
Full Screen
Map
Tools
Text Viewer
Table Viewer
Map Viewer
Retrieve Tables
Tabulate Frequencies
Sort Data
Export Data
Reformat Data
Compare Data
Concatenate Data
Convert Dictionary
Convert Shape to Map
Window
Cascade
Tile Top to Bottom
Tile Side by Side
Help
Help Topics
About

Edit the universe or filter of tabulation.
Select tabulation by value, weight, percents and undefined va
Enable or change tabulation by geographic area.

Show names instead of labels in trees.
Hide the trees and show full screen view.
Create thematic map of selected cells.

View text or data files.

View CSPro tables.

View CSPro thematic maps.

Retrieve tables from a data set.

Tabulate frequency distributions for file contents.
Sort cases based on ids.

Export data in various formats.

Reformat data using two dictionaries.
Compare contents of two similar data files.
Join text files one after the other.

Convert an ISSA or IMPS dictionary to CSPro.
Convert an ESRI shape file to CSPro map file.

Arrange windows in an overlapping fashion.
Arrange windows one above the other.
Arrange windows one beside the other.

Get help on current application.
Get information about the software.

Cross Tabulation Toolbar Summary

The CrossTab toolbar is displayed across the top of the window, immediately below the menu
bar. The toolbar provides quick mouse access to many of the more frequently-used features

found in CrossTab.

Click To

oD

Save tables

Print tables.

Run a tabulation

7 @ RS

Add a table

Open an application

Save an application

Create a New application

Setup page margins and headings for printing.

Preview contents of the dictionary.

lue.

105

Insert a table

Delete the current table

Specify a Universe for tabulation
Specify tabulation Parameters

Define Area Processing variables

Use the MapViewer

Show last Dictionary window.
Show last Forms window.
Show last Batch Edit window.

Show last Cross Tabulation window.

= BhEe @ HEEE XE

Get Help.

Cross Tabulation Keys Summary

Shortcuts specific to Cross Tabulation

Ins Insert a new table into the table set.
Del Delete a table from the table set.
Esc Cancel the current selection.

Ctrl + A Add a new table to the table set.
Ctrl + M Generate a thematic map.
Ctrl + R Run the tabulation.

Alt + A Edit the (geographic) areas of tabulation.
Alt + M Modify the current table’s title.

Alt + P Modify the current table’s parameters.
Alt +U Modify the current table’s universe.

Shortcuts common throughout CSPro

Ctrl +C Copy the selection and put it on the Clipboard.
Ctrl + N Create a new document.
Ctrl + O Open an existing document.

Ctrl + P Print the active document.

Ctrl +S Save the active document.

Ctrl +T Show names instead of labels in tree.
Ctrl + U Full screen.

Ctrl + F4 Close the active document.
Alt + F4 Quit the application.

106

F1

Show help contents and index.

CSPro Language

Introduction to CSPro Language

The CSPro language lets you to write programming logic for your Data Entry and Batch Edit
applications. In Data Entry applications you can write logic to control and check the keying
operation as it progresses. In Batch Edit applications you can write logic identify and correct

errors after data capture is complete.

This section contains the following information:

Language Elements

Declarations

Events

Order of Executing Data Entry Events
Order of Executing Batch Edit Events

Statements
Functions
Delimiters
Comments

Numeric Variables
String Variables
Numeric Arrays
Reserved Words
Data Items

This Item ($)
Subscripts
Numbers

Text Strings

Expressions
Substring Expressions
Special Values

Operators
Operator Precedence
And/Or Truth Table

External Files
Working Storage File
Message File

Strategies

Using Lookup files

Statements and Functions
Alphabetical List

107

Language Elements

Declarations and Procedures

Declarations

Declarations are made in the PROC GLOBAL section. This is always the first procedure in an
application. You can edit the PROC GLOBAL section by clicking on the topmost entry of the
forms tree or order tree.

You must declare the following in the PROC GLOBAL section:

Functions

String variables
Numeric variables
Numeric arrays

Implicit vs. Explicit declaration:
The CSPro compiler operates in one of two modes:

implicit: This allows you to declare a variable "on the fly", i.e., anywhere in your program.
For example, simply coding "myvar = 3;" in any procedure or function automatically declares
a numeric variable "myvar". All such declarations are global in scope, meaning you can
assign or get the value from any other procedure. Functions, string variables, and arrays
must still be declared in PROC GLOBAL. The advantage of this mode is that you can write
your code more quickly. The danger is that you may misspell the name of a variable or
dictionary item. If you do this, the compiler will create a separate variable for the misspelled
name. For example, you may code "if mivar = 3 then..." and the compiler will create a new
variable "mivar", with initial value 0, and therefore evaluate the condition as false.

explicit: You must declare all variables not declared in your dictionary; otherwise, the
variables will be flagged as errors by the compiler. The advantage is that you do not have to
worry about misspelled names.

The default compiler mode is explicit. You can change the default mode on your computer by
checking or unchecking the Options/Set Explicit setting. This setting will then remain in effect for
all applications. Note that this setting is in effect only on your computer; if you move your
application to another computer with a different setting, you may get a different result when you
compile. If you include eithera set inplicit or set explicit statementin PROC
GLOBAL, this will override the computer’s default setting and your application will always give the
same result on any machine.

Example:

PROC GLOBAL
al pha FirstNane; { this array will have a default length of 16 chars }
numeri ¢ Count1l, Count2;
array AgeDeck (5, 2);

function diff (x,y);

diff = x - vy;
end;

108

Events

CSPro logic consists of a collection of events. Each event performs the operations you specify
using CSPro statements and functions written in the CSPro Language.

Procedures can be any of the following kinds:

* global procedure

» forms file procedure
* level procedure

» form events

* roster events

* field events

The global procedure contains declarations and definitions. User-defined functions, tables,
views, arrays, and case identifiers are declared in this section. The global procedure always
appears at the beginning of the Logic file and begins with the line "PROC GLOBAL". Except for
within user-defined functions, there are no executable statements in this section. The global
procedure is equivalent to the ISSA application procedure.

The forms file procedure contains executable statements and assignments. The forms file
procedure has two parts: a preproc and a postproc. In data entry applications, the form’s file
preproc is executed before any data are entered, and the postproc is executed after all data for
the file are entered. Statements are assumed to be in the postproc unless it is explicitly stated
that they are in the preproc. The global procedure is equivalent to the ISSA "level 0" procedure.

The level, form, roster, and field events contain executable statements and assignments. All
can have a preproc and a postproc. Statements are assumed to be in the postproc unless it is
explicitly stated that they are in the preproc. In addition, forms, rosters, and fields can have
onfocus and killfocus events.

Events always fall under the "PROC" section, which is followed by the name of the field, roster,
form, level, or forms file. For example,

PROC PO5_AGE

preproc

{ logic to execute before cursor appears in the field...}

onf ocus

{ logic to execute before cursor appears in the field, data entry only}
killfocus

{ logic to execute after the field is keyed, data entry only}

post proc

{ logic to execute after the field is keyed...}

See also: Order of Executing Data Entry Events, Order of Executing Batch Edit Events

Order of Executing Data Entry Events

CSPro executes application events one case at a time. During data entry, preproc, postproc,
onfocus, and killfocus events are executed in the order in which they are encountered.

109

The following diagram illustrates the order of events for a two-level data entry application that has
no skip or advance statements that might otherwise alter the program’s natural flow. Level 1 has
two forms (1 and 2) and level 2 has one form (3).

Form File preproc
Level 1 preproc

Form 1 preproc

Form 1 onfocus
Field 11 preproc
Field 11 onfocus

<entry of Field 11>

Field 11 killfocus
Field 11 postproc

Field 14 preproc
Field 14 onfocus
<entry of Field 14>
Field 14 killfocus
Field 14 postproc
Form 1 killfocus
Form 1 postproc
Form 2 preproc
Form 2 onfocus
Field 21 preproc
Field 21 onfocus
<entry of Field 21>
Field 21 killfocus
Field 21 postproc

Field 26 preproc
Field 26 onfocus
<entry of Field 26>
Field 26 killfocus
Field 26 postproc
Form 2 killfocus
Form 2 postproc
Level 2 preproc
Form 3 preproc
Form 3 onfocus
Field 31 preproc
Field 31 onfocus
<entry of Field 31>
Field 31 killfocus
Field 31 postproc

Field 35 preproc
Field 35 onfocus
<entry of Field 35>

Field 35 killfocus
Field 35 postproc

Form 3 killfocus

Form 3 postproc

Level 2 postproc
Level 1 postproc
Form File postproc

110

Please note that the natural flow through the fields can also be altered by the use of the cursor or
mouse. For example:

Scenario 1: Three Fields, A, B, and C. From Field A, click on Field C. Assume Fields A-C alll
have preproc, onfocus, killfocus, and postproc events.

Result: Field 1’s killfocus would fire, but it's postproc would not. Nothing would execute for Field
B. Finally, Field C’s preproc, global onfocus, and local onfocus would all execute.

Scenario 2: Form 1, which contains one field, Field 1. Form 2, which also contains one field,
Field 2. After keying Field 1, you are automatically advanced to Form 2, Field 2. You then
decide to use the upl/left arrow to move back to Form 1. Assume both forms and both fields
have preproc, onfocus, killfocus, and postproc events.

Result: Field 2’s killfocus would fire, but it's postproc would not. Next, Form 1’s onfocus would
execute. Finally, Field 1’s global onfocus and local onfocus would execute—but it's preproc
would not. Please note that it does not matter how many fields are on Form 1, the onfocus
for Form 1 would always execute.

Essentially, if the programmer uses logic, or if the data entry operator moves backwards or
forwards with the mouse or arrow keys, the natural flow of the program will be altered. If exiting a
form, field, or roster prematurely, the killfocus event will execute but the postproc event will not.
Similarly, if entering a form, field, or roster by backing up into it, the onfocus event will execute but
the preproc event for it will not.

Order of Executing Batch Edit Events

CSPro executes the procedures in an application one case at a time. During data entry, preprocs
and postprocs are executed in the order of the form structure unless otherwise specified.

The following diagram illustrates the order of operations for a two-level batch edit application that
has no skip or advance statements that might otherwise alter the program’s natural flow . Level 1
has two forms (1 and 2) and level 2 has one form (3).

Form File preproc
Level 1 preproc
Form 1 preproc
Field 11 preproc
<entry of Field 11>
Field 11 postproc

Field 14 preproc
<entry of Field 14>
Field 14 postproc
Form 1 postproc
Form 2 preproc
Field 21 preproc
<entry of Field 21>
Field 21 postproc

Field 26 preproc
<entry of Field 26>
Field 26 postproc
Form 2 postproc
Level 2 preproc

111

Form 3 preproc
Field 31 preproc
<entry of Field 31>
Field 31 postproc
Field 34 preproc
<entry of Field 34>
Field 34 postproc
Form 3 postproc
Level 2 postproc
Level 1 postproc
Form File postproc

Statements and Functions

Statements
A procedure contains a series of statements. Each statement is a complete instruction to the
computer. Every statement, except the assignment statement, begins with a command and ends
with a semicolon (;). Statements are made up of a combination of commands, keywords,
expressions, and functions. For example,

skip to QLO3;
is a statement. Skip is a command, to is a keyword and Q103 is the name of a data entry field.
Assignment statements do not contain commands. For example,

SEX_RATI O = MALES / FEMALES;

calculates a sex ratio from the number of males and females.

Functions
Functions are of the form:
return-val ue = function-nane(paraneter-Ilist)

where the parameter-list can contain zero or more parameters, depending on the function call’'s
requirements.

Functions always return either a numeric or string value. Therefore, if you are going to assign a
function’s return value to a variable, the variable must be of the same type.

See also Function Declarations

Delimiters

112

Delimiters separate elements in the CSPro language.

Delimiter Symbol Usage
Blank Separate any language symbol
Comma , Separate parameters within functions

Quotation mark Specify the beginning and end of strings

Apostrophe b Specify the beginning and end of strings
Semi-colon ; Specify the end of statements
Colon : Separate the beginning and end of substrings
Parentheses () Specify the beginning and end of function parameters
Brackets [] Specify substrings

Comments

Comments make applications easier to understand. They are used to explain the purpose of
specific statements or to temporarily disable statements to help find errors.

Any text enclosed by braces { } is a comment. Comments can be placed anywhere in an
application and are not syntax checked. Comments can not be nested, that is comments within
comments are not allowed.

The first line in the example below is a comment.

PRCC HHDAY
{Do not allow June to have nore than 30 days}
if HHMONTH = 6 and $ > 30 then
X =errnsg (1, "June", 30, $);
reenter;
endi f;

Variables and Constants

Numeric Variables

In CSPro, numeric variables are stored internally in floating point format. They can accommodate
numbers of extremely small or large size, positive or negative.

Variable names must contain only letters, numbers, or the underscore (‘_’) character, and must
begin with a letter. They can be up to 32 characters long. Variable names are case insensitive,
meaning that uppercase and lowercase letters are considered the same. For example, "myvar"
and "MyVar" are equivalent.

You may declare a numeric variable "on the fly", i.e., in any event. Numeric variables are global
in scope, meaning you can assign or get the value of a variable from any other event.

Note: If you include set expli cit inthe global procedure, then you must declare all numeric
variables in the PROC GLOBAL section.

Examples of the use of numeric variables:

X = 0;
NumOf Ki ds = NumOf Kids + 1;

113

See Also: Declarations, Numeric Arrays, Set, Events

String Variables
String variables in CSPro store alphanumeric data.

Variable names must contain only letters, numbers, or the underscore (*_’) character, and must
begin with a letter. They can be up to 32 characters long. Variable names are case insensitive,
meaning that uppercase and lowercase letters are considered the same. For example, "myvar"
and "MyVar" are equivalent.

You must declare a string variable in the GLOBAL procedure, using the alpha statement.
Example of the use string variables:

PROC GLOBAL
al pha reply;

PRCC b
if g5

reply
endi f;

1 then
= "Yes";

See Also: Declarations, Alpha, Set, Text Strings

Numeric Arrays
CSPro supports numeric arrays of up to three dimensions.

Array names can contain only letters, numbers, or the underscore (*_’) character, and must begin
with a letter. They can be up to 32 characters long. Array hames are not case sensitive,
meaning that uppercase and lowercase letters are considered the same. For example, "myvar"
and "MyVar" would refer to the same variable.

You must declare arrays in the global procedure, using the array statement. The following would
be an example of a numeric array declaration:

PROC GLOBAL
nuneric MArray (5, 10);

The following are examples of using the MyArray array:
MYARRAY (1,3) = 0;
X = 2
y = 1
MYARRAY (X, Y) = 0;
Z = MWYARRAY (X, Y);

See Also: Array, Declarations, Set

114

Alphanumeric Arrays
CSPro supports alphanumeric arrays of up to three dimensions.

Array names can contain only letters, numbers, or the underscore (*_’) character, and must begin
with a letter. Array names can be up to 32 characters long and are not case sensitive—meaning
that uppercase and lowercase letters are considered the same. For example, "myvar" and
"MyVar" would refer to the same variable.

You must declare arrays in the global procedure; see the array statement for syntax and other
details.

An example of an alphanumeric array declaration and its usage is as follows:

PROC GLOBAL
array al pha(10) crop (20); { 20 crop nanmes, each up to 10 characters

| ong }

PROCC MY_PROGRAM

pr eproc
crop(1l)= "nmuize";
crop(2)= "wheat";
crop(3)= "rice";
crop(4)= "potatoes";

If you attempt to assign a string to the variable that is longer than the space allocated, the
additional portion will be truncated. For example, if the following were written:

crop(l)= "sweet potatoes”;

the variable would be assigned the string "sweet pota". There is no "spillover" effect that
exists in some programming languages, that would corrupt subsequent array cells.

If the string length of (10) had not been given above, the string would have default to a length of
16. See the alpha declaration for more information on this.

See Also: Array, Alpha, Declarations, Set

Reserved Words

CSPro does not allow certain names to be used as dictionary unique names, or as variables in
the programming logic, as they are part of CSPro’s procedural language. But don't worry about
accidental usage—when you attempt to name something in the CSPro system with a reserved
word, the system will notify you that you have used a reserved word.

In addition to the list of reserved words below, there are a few reserved words used internally by
CSPro. But again, CSPro will alert you when you try to create a dictionary item or variable with
this name. Further, if you are writing logic, reserved words are shown in blue—therefore, if you
attempt to create a variable using one of these reserved words, you will know this hame is not
available when it turns blue.

115

accept editnote level setlb

add else loadcase setub
advance elseif locate skip

all end log soccurs
alpha endbox maketext sort

and enddo max special
array endif min specific
average endgroup missing sqrt

box endlevel next stat
break enter noccurs stop

by errmsg noinput strip

case exec not sum
clear exit notappl summary
close exp numeric sysdate
cmcode filename onfocus sysparm
compare find open systime
concat float or then
count for pos title
crosstab function poschar to

curocc getbuffer postproc tonumber
default getnote preproc totocc
delcase if proc until
delete impute putnote update
demenu in random visualvalue
demode insert recode vset
denom int reenter where
disjoint ioerror retrieve while
display key seed write

do killfocus selcase writecase
edit length set

In general, reserved words have been linked to the function of the same name, if one exists. If no
link exists for a word, it is either because [1] there was more than one association for the word, or
[2] the word is for internal usage only.

Data Iltems

Data items are defined in a data dictionary. You can assign or get the value of a data item in any
procedure.

Examples of the use of data items:
PROC SEX
if AGE > 15 and NunOf Ki ds <> notappl then
$ = 2
endi f;

See Also: Dictionaries, Record Items, $

This Item ($)

The dollar sign ($) is a short-hand way of referring to a data item if used within it's procedure.

116

Example:

PROC AGE
if MARI TAL_STATUS > 1 then { ever narried }
if $ < 12 then { AGE < 14 }
errnsg ("Person too young (%) to be married", $);
endi f;
endi f;
Subscripts

Items with multiple occurrences or in multiple records have one name (the item name), but can
occur multiple times. In order to specify the specific occurrence of the item, you may need to use
an index or subscript. The subscripts are integers and are numbered from 1.

Imagine that the SEX is an item in the multiple record CHILD. The expression
SEX(1)

refers to the sex of the first child. The expression
SEX(3)

refers to the sex of the third child. The expression
SEX(i)

refers to the sex of the ith child.

Subscripts can be numeric expressions as well as numeric constants. For example, the
expression

SEX(curocc(CHI LD));

refers to the current occurrence of CHILD. (curocc is a function that returns the current
occurrence of a multiple record). When referring to multiply-occurring items within the scope of
their repeating, you do not need to use subscripts, as the current occurrence will be assumed.
For example, suppose you have a population record that has multiply occurrences, and belonging
to that record are the three variables SEX, AGE, and FERTILITY. If your code is contained within
any of these variables’ procedures, you do not need to use subscripts. For example:

Example 1:
{ this will check the sex and fertility val ues
for each person in the household }
PRCC SEX
if $=1then
if fertility <> notappl then
errmsg ("male found with fertility");
endi f;
elseif $ = 2 then
if age < 10 and fertility <> notappl then
errmsg ("underage fenale found with fertility data");
endi f;
el se
errnsg ("invalid sex code (sex=%)", $);
endi f;

117

However, if you were to place the exact same logic elsewhere in your program, you would have
to programmatically mimic the looping mechanism, and use subscripts. For example, if the above
code were placed in the QUEST procedure, it would be adjusted as follows:

Example 2:
PROC QUEST
NunPeopl e=count (POP_RECS)
do varying i=1 while i <= NunPeopl e
if sex(i) = 1 then
if fertility(i) <> notappl then
errmsg ("male found with fertility");
endi f;
elseif sex(i) = 2 then
if age(i) < 10 and fertility(i) <> notappl then
errmsg ("underage fenmale found with fertility data");
endi f;
el se
errnmsg ("invalid sex code (sex=%l)", sex(i));
endi f;
enddo;

Numbers

Numbers may be any positive or negative integer or decimal value. Negative numbers have a
leading minus (-) sign. Positive numbers have no sign.

Numbers can have up to 15 significant digits.
Numbers must not have thousands separators.

Decimal points can be either period (.) or comma (,) depending on the region setting of the
computer.

Text Strings

A text string is any set of characters in the computer’s character set enclosed between a pair of
guotation marks (") or apostrophes (). Any spaces enclosed within the quotation marks or
apostrophes are considered part of the text string. Upper- and lower-case letters may be used.
However, a text string ‘a’ is different from a text string ‘A’. The maximum length of a text string is
250 characters. If you wish to have apostrophes () embedded within your string, you must use
the quotation marks (") to enclose it. For example,

MyString="That’s great!’; would set MyString to >that<, and the trailing =s great!< would be
considered outside the string, and therefore a compiler error

So if you wanted to accomplish the above, you must write:
MyString="That’s great!";

Similarly, if you wanted to embed quotation marks within your string, you must write the string as
follows:

118

MyString="The chair is 23" high’;

Note: Strings that are surrounded by quotation marks will appear in pink. Strings that are
surrounded by apostrophes will appear in black. We recommend using quotations, as it will be
quickly apparent whether you have terminated your string properly or not.

Expressions

Expressions

An expression is a combination of operators and operands. Operands can be constants, items,
variables, functions, or some combination thereof. Operators can be arithmetic (+, -, *, /),
relational (=, <>, >, <, >=, <=) or logical (and, or, not). Every expression evaluates to a value and
can therefore be used as a sub-expression of other expressions. There are three types of
expressions: numeric, string, and logical.

Numeric expressions evaluate to numbers. The following are numeric expressions:

4
4 + 5

A/l B
A*(B+C/ D)
A + sqrt(B)

String expressions evaluate to strings. The following are string expressions:
answer =" Yes";
concat (FI RST_NAME, " ", LAST_NAME);
edit("zz779", A + B);
Logical expressions (conditions) evaluate to true (1) or false (0). The following are conditions:

KIDS > 5
SEX = 2 and AGE > 12

Substring Expressions

A substring expression lets you extract a part (substring) of a string. It takes the form:
string[start:|ength]

where start gives the starting character position of the substring in the string and length gives

the number of characters to include in the substring, including the starting character. If length is

not given, then it is assumed to be to the end of the string.

For example, suppose the variable STRING has the value "ABCDEF".

STRI NG 1] " ABCDEF"
STRING 3:1] "C'

STRI NG 3] " CDEF"
STRING 2:3] "BCD'
STRI NG 5] " EF"

119

STRI N{ 4: 7] " DEF"

Likewise, substring expressions can be performed on string arrays. Suppose the string array
"crop” had the following definition:

PROC GLOBAL
array al pha(10) crop (20); { 5 crop nanes, each up to 10 characters
| ong }

PROC MY_PROGRAM
preproc
crop(1l)= "nuize";
crop(2)= "wheat";
crop(3)= "rice";
crop(4)= "potatoes";
crop(5)= "l egunes"”;

The following substring expressions would yield the results as shown:

crop(1)[2] "ai ze"
crop(1)[3:1] i
crop(2)[3] "eat"
crop(3)[2] "ice"
crop(4)[5] "t oes"
crop(5)[1:3] "l eg"

Both start and length can be numeric expressions as well as constants. For example, to obtain
the last 3 characters of STRING you could use the expression:

STRING | engt h(STRING) - 2: 3]

In this example, if your string is not at least two characters long, you may get unexpected results.

Special Values

There are three special values in the CSPro language: missing, notappl, and default. They have
the following meaning and uses:

Missing

The value MISSING indicates that a data item was supposed to have a response and no
response was given. Other terms for this are "not stated" and "non-response”. To properly
utilize this special value, you must create a value set for this item in the dictionary, setting one of
the value set entries to the special value "missing." For example, you could set 8 (or 88, 888,
etc.) or 9 (or 99, 999, etc.) to missing. Finally, although you must associate a number with the
special value missing, you can only use the = or <> comparison operators against the special
value ni ssi ng—you can not refer to the numeric value you assigned it to in your dictionary
value set.

Notappl
The value NOTAPPL indicates that a data item did not have a response because the question
did not apply to this respondent. Fields that are skipped during data entry are assigned the
value NOTAPPL.

Default

120

The value DEFAULT indicates that a data item or variable has an undefined value. This can
result from various circumstances. For example, a calculation that contains a special value as
one of its operands returns the result DEFAULT.

A particular value of a data item can be assigned one of these special values in the data
dictionary.

Operators

Operators

Arithmetic Operators

Operation Symbol
Addition +
Subtraction -
Multiplication *
Division /
Modulo %
Exponentiation n

Relational Operators

Operation Symbol
Equal to =
Not equal to <>
Less than <
Less than or equal to <=
Greater than >
Greater than or equal to >=
In range in

Logical Operators

Operation Symbol Keyword
Negation ! not
Conjunction & and
Disjunction | or

If and only if <=>

(Either the symbol or keyword can be used)

When more than one operator exists in an expression, the order in which the operators are
evaluated is determined by their precedence.

In Operator

This operator is used in logical expressions to test whether an item or variable is within a set of
values or ranges. The item or variable can be numeric or alphanumeric.

Example 1:

121

if RELATIONSH P in 1:5 then
is the same as

if RELATIONSHI P >= 1 and RELATIONSHI P <= 5 then

Example 2:
if WORK in 1,3,5 then
is the same as

if WORK = 1 or WORK = 3 or WORK = 5 then

Example 3:
if Xin 1:4, nmissing, notappl then
is the same as

if (X>=1 and X <= 4) or X = missing or X = notappl then

Example 4:
if NAME in "A":"MZZ" then
is the same as

if NAME >= "A" and NAME <= "NZZ" then

If and Only If Operator <=>

This operator can be used to combine multiple if statements. For example, consider the following
more traditional program:

if fertility = notappl then { fertility is blank }
if sex = 2 and age >= 10 then { but this is a wonman of chil d-bearing
age }
fertility = 0; { then she should have a non-bl ank response }
endi f;
endi f;

This could more succinctly be written as follows:
if fertility = notappl then { fertility is blank }
fertility = 0 <=> sex = 2 and age >= 10;

endi f;

Note:

122

This is not a standard programming operator, and if your code will be developed, edited,

and/or reviewed by multiple individuals, it may be more understandable to use an if-then-else

statement series.

See also Operators and Operator Precedence

Operator Precedence

The table below shows the order of precedence for operators. When operators of the same

precedence are in an expression, they are evaluated from left to right. The order of precedence

can be changed using parentheses. Operators in parentheses are evaluated first.

Order Operator
1 N
* | %
+ -

oO~NO O WN
>
(@]
4

And/Or Truth Table

>= <>

in

The truth table summarizes all possible evaluations when two expressions (X and Y) joined by an
operator (and or or) are true, false, or undefined.

X true
true true
false true
undefined true

X true

true true
false false
undefined undefined
Files

External Files

or

Y
false
true
false
undefined

and

Y
false
false
false
false

undefined
true
undefined
undefined

undefined
undefined
false
undefined

123

An external file is an ASCII text file that you can use in a data entry or batch application, other
than the primary data file. You can read and/or write to external files, using CSPro logic. You
must create a data dictionary that describes the format of any external file you want to use. An
external file dictionary can contain only one level.

You can share external files across a network. External files which are only read from, can
always be shared. External files which are written to can only be used by one user at a time.

See also: Insert a File in an Application, Drop a File from an Application, Using Lookup Files,
External File Functions

Sharing External Files
External files can be used by several different users across a network.

If an external file is accessed only by read functions (loadcase, locate, find, key, retrieve), no
special programming actions need to be taken to share the file. Multiple users can read the file at
any time.

However, if an external file is accessed by any write functions (writecase or delcase), only one
user at a time may use the file. For write functions, the external file is like a file in a filing cabinet.
When one person has taken out the file for use, no one else can use the file until the person has
returned it.

You can control when the file is in use by coding open and close functions. The file is in use
between the execution of the open and the close function. This gives you complete control over
when the file is in use. You should try to minimize the time the file is in use in order to allow other
users to access the file.

If open and close functions are NOT coded for an external file used for writing, the following open
and close rules apply:

1. In batch processing the file is opened at the beginning of the run and closed at the end.

2. In data entry processing the file is opened just before any external file function is executed
and is closed immediately following the function, unless one of the following functions is used

on the file:
a. loadcase without a var-list
b. retrieve
c. key

In this case the file is opened just before the first file function is executed, but left open after
the function is completed. These functions depend on remembering the current position of
the file. If the file is closed, the current position is lost.

Working Storage File

Working storage contains alphanumeric variables and data items used in a procedure application
and which are not part of any data file. Definitions of working storage variables and data items
are contained in a data dictionary which is not connected to any data file. This data dictionary
can have any number of records but can have only one level.

See also: Insert a File in an Application, Drop a File from an Application

124

Message File

The message file for a data entry application stores the error message text that is displayed
during data entry. The message file has the filename <application-name>.msg. During data
entry design, the message text is modified at the bottom of the logic screen.

Basic Messages

Each line in the message file contains one message. A message consists of a message number
followed by text. The message text can be up to 240 characters long. It is displayed when an
errmsg function with the message number is executed in a data entry application.

For example, suppose a message file contains the following lines:

1 This is the first nessage
2 This is the second nessage

When an errmsg(1) function is executed in an application, the message "This is the first
message" is displayed on screen. When an errmsg(2) function is executed, the message "This is
the second message" will be displayed on screen.

Messages with Parameters

Parameters can be specified in the errmsg function. These parameters can be numeric
expressions or string expressions. String parameters in the error message text are indicated by
%s. Integer numeric parameters are indicated with %d. Decimal numeric parameters are
indicated with %f.

For example, an error message file might contain the following:

1 The nonth of % has only % days. You entered %!
The application could use this as follows:

x = errnsg (1,"June", 30, 31);

When the errmsg function is executed, it knows to use error message "1", and substitute the word
"June" for %s in the message text, the number 30 for the first %d, and 31 for the second %d. The
message "The month of June has only 30 days. You entered 31!" will be displayed on screen.

The more general the parameters of the message, the more flexible the message. In the example
below, the value of the variable HHDAY is used as a parameter. The error message will use the
value of HHDAY if the errmsg function is executed.

PRCC HHDAY
if HHMONTH = 6 and HHDAY > 30 then
x = errnmsg (1, "June", 30, HHDAY);
reenter;
endi f;

Any number of different messages can be included in the Message File. The errmsg function can

be used in any dictionary, form, group, or field procedure, or in a user-defined function. The
maximum number of parameters in an errmsg function is 20.

125

Strategies

Using Lookup Files

A lookup file (external file) is an ASCII text file that you can use in a Data Entry or Batch
application from which you retrieve data to display on a form or to use in a calculation.
Possibilities include:

* Geographic codes and names. Your application could show the name corresponding to the
code the user keyed.

¢ Industry and occupation codes. Your application could make sure the user keys a valid code.

¢ Last year's data. Your application could look up a corresponding field from last year’s data
and calculate a percentage change.

¢ Generalized menu choices. Your application could read a lookup file and show the contents
on the screen as a menu, then convert the user’s choice to a code.

A lookup file requires a CSPro data dictionary.

To use a lookup file (external file) in your application, do the following:

1 Create the lookup file and its data dictionary

2 Close the lookup file’s data dictionary

3 Create a Data Entry or Batch Edit Application with a standard forms file and data dictionary.

4 Insert the lookup file’s data dictionary into the application.

5 Add logic to the application to manipulate the lookup file. The Loadcase and Selcase functions
are particularly useful

Note: The CSPro examples include an application that demonstrates the use of a lookup file.
This is normally installed in the folder named "c:\Program Files\CSPro 2.4\Examples".

Statements and Functions

Alphabetical List of Statements and Functions

accept Returns the number of a choice from a list made by the data entry operator.

advance Moves forward field by field to a specified field during data entry.

alpha Declares alphanumeric variables used in the application.

(assignment) Sets a variable equal to the value of an expression.

array Declares a 1- to 3-dimension array of humeric values.

average Returns the average of an item that occurs multiple times.

box Old name for recode statement.

clear Initializes the memory values of data items defined in external files and working
storage to zero or blank.

close Closes a previously opened external file.

cmcode Returns the number of months since the beginning of the century given a month
and year.

compare Returns alphabetical order (i.e., collating sequence) of the two strings.

126

concat Joins two or more strings into one string.

count Returns the number of occurrences for a repeating form or roster.

curocc Returns the current occurrence number for a repeating form, roster, or record.
delcase Marks a case for deletion in an external file based on a key.

delete The delete function removes a record or item occurrence from the current case.
demode Returns the current data entry mode.

display This function, to display a message, has been superceded by errmsg.

do Executes one or more statements repeatedly while a logical condition remains

true or until a logical condition is no longer true.

edit Converts a number to a string.

editnote Displays data entry field note box for adding or changing.

endgroup Ends data entry for the current record or group/roster.

endlevel Ends data entry for the current level.

enter Enters data from a secondary form file.

errmsg Displays or writes a message.

exit Ends a procedure before normal processing is expected to end.

exp Returns the value of e raised to a given power.

filename Returns the data file name currently associated with a data dictionary.

find Determines the existence of a case in an external file that matches a condition.
for Loops through multiple records or items.

function Declares a user-defined function.

getbuffer Returns a string containing the contents of a data item.

getnote Gets a data entry field note and assigns it to a string.

if Executes statements conditionally.

impute Assigns a value to a data item and logs the frequency of assignments.
insert The insert function creates a record or item occurrence in the current case.
int Returns the integer portion of a numeric expression.

key Returns the key of the case at the current position in an external file.
killfocus Declares that following statements are executed object stops being active.
length Returns the length of a dictionary item or a string.

loadcase Reads a case from an external file into memory based on a key.

locate Finds but does not load a case in an external file that matches a condition.
log Returns the base-10 logarithm of a numeric expression.

maketext Returns a formatted string with inserted values.

max Returns the maximum value of an item that occurs multiple times.

min Returns the minimum value of an item that occurs multiple times.

noccurs Returns the number of occurrences for a repeating form or roster.

noinput Prevents input for the current field during data entry.

numeric Declares numeric variables used in the application.

onfocus Declares that following statements are executed object becomes active.
open Opens and keeps open an external file.

pos Returns the position of a string within another string.

preproc Declares that following statements are executed at the beginning of a block.
proc Declares the beginning of a new procedure.

127

postproc
putnote

random
recode

reenter
retrieve

seed
selcase
set

skip

skip case
soccurs
sort

special
sqrt
stop
strip
sum
sysdate
sysparm
systime

tonumber
totocc

visualvalue

while

write
writecase

Declares that following statements are executed at the end of a block.
Puts the contents of string to a data entry field note.

Returns a pseudo-random integer in a given range.

Assigns a value to a variable based on the value of one or more other variables.
Forces the data entry operator to re-enter a field.

Reads a case from the current position of an external file into memory.

Initializes the random number generator to a particular starting place.

Allows a data entry operator to select and load a case from an external file.
Switches the values of various system parameters.

Jumps to a specified field during data entry.

Ends processing of the current case in a batch edit run.

Returns the number of occurrences of a record.

The sort function sort occurrences of records or items based on the value of an
item.

Determines whether a variable's value is MISSING, NOTAPPL, or DEFAULT.
Returns the square root of a numeric expression.

Ends a batch edit run before the last case is processed.

Removes leading and trailing blanks from a string.

Returns the sum of an item that occurs multiple times.

Returns the current system date as an integer.

Returns a parameter from your data entry or batch edit pff file.

Returns the current system time as an integer.

Converts a string to a number.
Returns the total occurrences for a repeating form, roster, or record.

During data entry, the visualvalue function returns the value of a data item prior
to it’s input.

Executes one or more statements repeatedly while a logical condition remains
true.

Write to a text file.

Writes a case from memory to an external file.

Declaration Statements

Alpha Statement

The alpha statement declares alphanumeric variables used in the application.

Format:
al pha [(len)] var-1[, var-2[..., var-n]]);
[]indicates that this part is optional.
Examples:
PROC GLOBAL

al pha a, b, c;
al pha(10) x,vy;

Description:

128

The alpha statement is used to define alphanumeric variables used in the application. The len
is the number of characters in the variable. The len applies to all variables which follow in the
same statement. If no len is given, 16 is assumed. The maximum string length that can be
declared is 8,192.

If an alpha var is assigned a string which is shorter than the space that has been allocated for
it, the trailing character positions will be blank-filled. Conversely, if the string to be assigned is
longer than the space allocated for the alpha var, then the string will be truncated. The
following two examples, using the declaration of x above, should clarify this point:

X = "hi nont;

x will now equal " hi nmom
1234567890

X = "good night, noni;

x will now equal " good ni ght "
1234567890

See also: Numeric, Set, Alphanumeric Arrays

Array Statement

The array statement allows the declaration of a 1, 2, or 3 dimension array. Arrays can contain
either numeric or alphanumeric values.

Format:
array [alpha[(l en)]] variable(dim1[,dim2[,dim3]]);

[]indicates that this part is optional.

Example:
PROC GLOBAL
array age_ HD (2,8); { sex by relationship }
array al pha(15) crop (10); { 10 crop names, each up to 15 characters

[ong }
nureric mal e, fenale;

PROC MY_PROGRAM
preproc

age_hd (mal e, 1) 20; { male head }
age_hd (mal e, 2) 24; { mal e spouse }
age_hd (mal e, 3) 8; { male child }

{ continue with male initializations }

age_hd (female, 1) 26; { femal e head }
age_hd (femal e, 2) 32; { femal e spouse }
age_hd (femal e, 3) 5; { female child }

{ continue with female initializations }

crop(l)= "nmaize";

129

crop(2)= "wheat";

crop(3)= "rice";

crop(4)= "potatoes";

{ continue with crop initializations }

Description:
The array statement defines a variable which contains an array of either numeric or
alphanumeric values. Only one variable can be defined in each array statement (note in the
example above there is a separate declaration for each array cell). The array can have 1, 2,
or 3 dimensions. The array declaration(s) must appear in the global section, much like the
numeric statement. The initial array contents are zero (if numeric) and blank (if alphanumeric)
until a value for each dimension is assigned.

Whenever the array variable is used in the application, a value or numeric expression for each
dimension must be given. For example, in the example above the variables "male" and
"female" are used as the first subscript to the array, while a number is used for the second
subscript.

See Also: numeric arrays, alphanumeric arrays

Function Statement

The function keyword allows the creation a user-defined function. Function declarations must be
coded in the PROC GLOBAL section.

Format:
function function-name([p-1[,p-2[...,p-nll1]);
stat enents;
function-nane = expression;
end;

[]indicates that this part is optional.

Example 1:
PROC GLOBAL
function absval ue(VALUE) ;
if VALUE < O then
absval ue = (-VALUE);

el se
absval ue = VALUE;
endi f;
end;
PROC ACE
AGE = absval ue (AGE); {cal |l user-defined function}
Example 2:
PROC GLOBAL
function isvalidnanme(al pha (32) VALUE);
LOOKUP_NAME = VALUE;
i sval i dname = | oadcase(LOOKUP, LOOKUP_NAME) ;
end;
PROC ACE

if isvalidnane("JIM) then {call user-defined function}

130

Description:
User-defined functions are defined in the declaration portion (PROC GLOBAL) of an
application. Once defined, they can be used anywhere in an application. Functions are used
to perform operations that are used in several different places in an application.

Each parameter specifies a numeric or alphanumeric variable that is used by the statements
within the function. These variables are local to the function. That is, if a variable is passed as
a parameter, its value in the rest of the application will not be changed by actions within the
function. All other variables used in the function are global in scope; they can be changed
anywhere in the application including inside the function.

To specify an alphanumeric parameter, you must place the keyword alpha before the
parameter. By default, the length of the alphanumeric the parameter is 16 characters. To
specify a different length, place alpha(length) before the parameter name.

A user-defined function returns a single numeric value. To specify the return value, assign a
numeric value to the name of the function (see examples above).

User-defined functions can contain CSPro statements and functions, and other user-defined
functions. If no return value is assigned to the function, a DEFAULT value is returned. User-
defined functions cannot be recursive (i.e., they can not call themselves), though they can call
other functions (either user-defined or system-supplied). Function arguments are optional.

Example Application:
An example of a user-defined function can be found in the DateCheck folder, under the
Examples folder.

See also: if

Numeric Statement

The numeric keyword allows the creation of "on-the-fly" variables (i.e., variables not associated
with any dictionary). Numeric declarations must be coded in the PROC GLOBAL section.

Format:
nuneric varl[, var2, ...];

[]indicates that this part is optional.

Example:
PROC GLOBAL

nuneric x, y, z, tenp;

Description:
User-defined numeric variables must be declared with the numeric declaration if the set
expl i cit option is active (Options/Set Explicit on the toolbar) or if a set explicit statement is
included in the PROC GLOBAL section of your program. A numeric variable is significant to
15 digits. It is equivalent to a float or double variable.

See also: Alpha, Set, Array

131

Preproc Event

The preproc statement declares that the following statements are executed at the beginning of a
run, case, level, record, form, roster, or field.

Format:
preproc

Example:
PRCC DATE
preproc { must imediately follow the "PROC'" declaration }
DATE = sysdat e(" DDVMYYYY");
{ postproc would go here, if desired }

Description:
A preproc procedure can be coded in a proc for any run, case, level, record, form, roster, or field.

In data entry applications, the statements in preproc procedure are executed when you move
forward onto an object, that is flow onto it, advance to it, step to it, go to it, click on it, tab to it, or
manually skip to it. Preproc statements are NOT executed when you move backward onto an
object, that is reenter it, go backwards to it, or backtab to it. If you want to execute the
statements when you move BOTH forward and backward onto a field, code them in the onfocus
procedure.

In batch edit applications, preprocs are used to execute logic at the beginning of a run, case,
level, or record. For a data item there is no difference between placing all your logic in a preproc
or postproc. Remember, if you don’t code a preproc or postproc in a proc, all statements are
considered postproc statements by default.

See Also: proc, postproc, onfocus, Killfocus, Events, Order of Executing Data Entry Events,
Order of Executing Batch Edit Events

Proc Event

The proc statement declares the beginning of the procedures for a data entry or batch
processing element.

Format:
PROC pr ocedur e- nane

Example:
PROC AGE

Description:
The procedure name must always be the name of an object in the forms or edit tree. If you
are in the logic view and select a processing element from the forms or edit tree, the logic view
will automatically generate the "PROC <item-name>" heading for you.

If you plan to write logic for more than one procedure, the order of procedures must be as
follows:

PRCC <i t em nane>

pr eproc
<st at enent s>

132

onf ocus { data entry only }
<st at enent s>

killfocus { data entry only }
<st at enent s>

post proc
<st at enent s>

See Also: preproc, postproc, onfocus, killfocus, Events, Order of Executing Data Entry Events,
Order of Executing Batch Edit Events

Postproc Event

The postproc statement declares that the following statements are executed at the end of a run,
case, level, record, form, roster, or field.

Format:
post proc

Example:
PRCC SEX
{ preproc would go here, if desired }
post proc
if ($ =2 and AGE < 5) then
reenter;
endi f;

Description:
A postproc procedure can be coded in a proc for any run, case, level, record, form, roster, or field.

In data entry applications, statements in a postproc procedure are executed when you complete
an object, that is flow off of it. Postproc statements are NOT executed when you click off a field,
manually skip from a field, backtab from a field, or go to another field. If you want to execute the
statements in these situations, code them in the killfocus procedure.

In batch edit applications, postprocs are used to execute logic at the end of a run, case, level, or
record. For a data item there is no difference between placing all your logic in a preproc or
postproc. Remember, if you don’t code a preproc or postproc in a proc, all statements are
considered postproc statements by default.

See Also: proc, preproc, onfocus, killfocus, Events, Order of Executing Data Entry Events, Order
of Executing Batch Edit Events

Set Statement
The set statement switches the values of various system parameters.

Format:
set explicit | inplicit;

| indicates that either keyword may be used.

Example:

133

PROC GLOBAL
set explicit;
nuneric Xx,y, z;

Description:
Set explicit/implicit overrides the compiler’s default setting of this switch. If used, it must be
the first line coded in the PROC GLOBAL section.

set explicit means that any numeric or string variables used in your program must be
declared using numeric or alpha statements in the PROC GLOBAL section. If they are not, a
compiler error message is generated when an undeclared variable is used.

set implicit means that numeric or string variables do not have to be declared in the PROC
GLOBAL section.

It is good programming practice to use set explicit either as the computer default or to code it
in Proc Global. If variables are explicitly defined, the compiler can detect misspellings of
variable names, which can be hard to find otherwise.

See also: Set Attributes, Numeric, Alpha

Set Attributes Statement
The set statement switches the values of various system parameters.

Format:
set attributes (field-1[, field-2, ..., field-N]) display | visible
| autoskip | return | protect | hidden | native;

[] indicates that this part is optional
| indicates that one of the attributes may be selected

Example:
PROC QUEST
preproc
set attributes (total _HH income) protect;

Description:
Field properties can be set statically, via the field properties dialog box, or dynamically at run
time via the set attributes command. A dynamically-set field attribute will override any
statically-set attribute(s). Field properties set dynamically can be placed anywhere in the
program except in the PROC GLOBAL section.

One or more dictionary items can be named in the field list. However, only one attribute
setting can be used in a set attributes statement. The options are as follows:

di spl ay If afield is hidden, its value will now be visible; if it was already visible, the setting
has no effect.

vi si bl e If afield is hidden, its value will now be visible; if it was already visible, the setting
has no effect.

aut oski p This is equivalent to leaving the statically-set field property "Use Enter Key"
unchecked. If this option is used, the cursor automatically advances to the next field,

134

after the maximum number of characters have been entered. This option will
override any statically-set field property settings.

ret urn This is equivalent to checking the statically-set field property "Use Enter Key." If this
option is used, the operator must press the <Enter> key to advance from the listed
field(s). This option will override any statically-set field property settings.

prot ect This is identical to the statically-set field property "protected.” If a field is set to
'protect’, the operator will not be able to enter it. If the field was already statically set
to "protected,"” the setting has no effect.

hi dden If a field is visible, its value will now be hidden from view; if it was already hidden, the
setting has no effect.

nat i ve Regardless of what settings have been made dynamically in the program, if a field is
set to native, all field settings will revert to their initial, statically-set properties.

See also: Set Explicit | Implicit, Numeric, Alpha
Assignment and Recode Statements

Assignment Statement
The assignment statement sets a variable equal to the value of an expression.

Format:
nuneric-vari abl e = nuneri c-expression;
string-variable = string-expression;

Examples:
AGE = 10;
QL02 = PREV_AGE;
Y = sqrt(X);
NAME = "John Doe";

Description:

If the expression is a string-expression, then the variable must be alphanumeric. If the
expression is numeric or conditional, then the variable must be numeric.

Recode (Box) Statement
(Note to ISSA users: The Recode and Box statements are identical.)

The recode statement assigns a value to a variable based on the value of one or more other
variables.

Format:
recode var-1 [:var-2 [:var-n]] => var-out;
[range-1] [:range-2 [:range-n]] => exp;
[range-1] [:range-2 [:range-n]] => exp;
[: [:1] => ot her - exp;
endr ecode;

[]indicates that this part is optional.

135

Example 1:

recode AGE => AGE_GROUP
0-19 => 1
20-29 => 2
30-39 => 3
40-49 => 4;
>= 50 => 5
=> 9
endr ecode;

is equivalent to the following if statements:

i f AGE in 0:19 then
AGE GROUP = 1;

el seif AGE in 20:29 then
AGE_GROUP = 2;

el seif AGE in 30:39 then
AGE_GROUP = 3;

el seif AGE in 40:49 then
AGE _GROUP = 4;

el seif AGE >= 50 then
AGE_GROUP = 5;

el se
AGE_GROUP = 9;
endi f;
Example 2:
recode ATTEND . ED LEVEL => EDUC,
2, not appl : => 1,
1 o1 => 2;
1 2,3 => 3;
endr ecode;

is equivalent to the following if statenments:

if (ATTEND = 2 or ATTEND = notappl) then
EDUC = 1;
el seif ATTEND = 1 then
if ED LEVEL = 1 then
EDUC = 2;
elseif ED LEVEL in 2:3 then
EDUC = 3;
endi f;
el se
EDUC = 9;
endi f;

Example 3:

recode UNITS : NUMBER => DAYS;
not appl => not appl ;
m ssing => mi ssing;
1 : => NUMBER;
2 : => NUMBER* 7;

136

3 : => NUMBER* 30;
4 : => NUVMBER* 365;
: => m ssi ng;
endr ecode;

is equivalent to the following if statements:

i f NUVBER
el sei f NUMBER

not appl then DAYS = not appl ;
m ssing then DAYS = m ssing;

elseif UNNTS = 1 then DAYS = NUMBER;
elseif UNNTS = 2 then DAYS = NUMVBER*7;
elseif UNNTS = 3 then DAYS = NUMBER*30;
elseif UNNTS = 4 then DAYS = NUMBER*365;
el se DAYS = m ssi ng;
endi f;

Description:

The recode statement is used to recode variables, to assign values to variables, and to create
new variables from existing ones. It works like a multiple if statement but is easier to use. The
recode statement evaluates each line within it sequentially, beginning with the first line.

If the values of variables var-1 to var-n lie within the ranges range-1 to range-n respectively,
then var-out is assigned the value given by the expression on the first line and the recode
statement is ended. If the values of the variables var-1 to var-n do not all lie within their
specified ranges, then the next line of the recode statement is evaluated. This process
continues until either a value is assigned to var-out or the end of the recode statement is
reached.

A variable in a multiple record or group cannot be used in the recode statement except in data
entry applications (where it may be specified without an index and the current occurrence of a
variable is assumed). Use working variables to refer to or to assign values to variables in
multiple sections or groups.

Variables var-1 through var-n are referred to as independent variables and must be separated
by colons. Var-out, the variable whose value is assigned by the recode statement, is referred
to as the dependent variable. A recode statement can have any number of independent
variables, but only one dependent variable. The dependent variable can also be included
among the independent variables. The dependent variable is separated from the independent
variables by =>.

The ranges specified in the recode statement (e.g., range-1 through range-n) can take the
following formats:

¢ A range between two values, e.g., 12-15

¢ An individual value, e.g., 9

e A comparison with another value, using >, <, >=, <=, or <>, e.g., <5

¢ A special value , e.g., NOTAPPL

e Some combination of these formats separated by a comma, e.g., <5, 9, 12-15, missing

A blank range for an independent variable includes all values. A blank range for all
independent variables on the last line of a recode statement acts as a catch-all condition. It
ensures that a value is always assigned to var-out by the recode statement. If a value is not
assigned by the recode statement, the value of var-out will not change. The number of ranges
on each line must equal the number of independent variables.

137

The expression for the dependent variable must result in a numeric value if var-out is a numeric
variable and a string if var-out is an alphanumeric variable.

See also: If

Impute Function

The impute statement assigns a value to a data item and logs the frequency of assignments.

Format:
i mpute (item nane, expression)
[stat (itemnanel, itemnane2,....,item nanmeN)]

[title (al pha-expression)]
[vset (vset-nunber)]
[specific];

[]indicates that this part is optional.

Example:
i mput e(PO4_AGE, TEMPAGE) title("Age updated via TenpAge")
vset (2);

Description:
The parameters are:

item_name: the dictionary data item to impute. The item must be numeric, with or without
decimals, and can be single or multiple. If the item is multiple and is being used inside its
PROC, the current occurrence is assumed. If the item is multiple and is being referenced
outside its PROC, an occurrence must be specified. Occurrence numbers are 1-based.

expression: is a number or logical expression; for example, ‘5’, or ‘2+3’.
The options are:

STAT (item_namel], item_name2]): tells the system to generate the secondary .dcf and .dat
files. These files contain references to the data items that were changed; i.e., identifying ID
values, the data item being imputed, and each subsequent data item named in the STAT
parameter list.

TITLE (alpha_expr): Under the "IMPUTE STATISTICS" heading at the top of each page, this
line will replace the default line that is generated ("IMPUTED Item (<unique name of data
item>): <label name of data item>").

VSET (vset_number): is the 1-based value set number of the item being imputed (i.e.,
impute_item_name), and corresponds to the order of listing in the data dictionary (i.e., the first
value set of an item will be number 1, the second value set will be number 2, etc). This may
yield a different number of frequencies than what occurred when not using this option. For
example, if you are imputing age, and do not use the VSET option, your report will show the
total number of imputations that occurred. However, if you use the VSET option, and the
value set you choose does not list all possible values, then the total number of imputations
listed in the frequency report will most likely be less than that given if you did not use this
option.

138

SPECIFIC: indicates if the frequency will be generated alone or not. You can have multiple
IMPUTE statements for a single data item. If you do this, you may want to have frequency
reports separated for each IMPUTE. If SPECIFIC is not used, all IMPUTES for a given data
item will be lumped together in the frequency report.

The impute command can generate up to three files:
<xxx>.frq
<xxx>.dat (only generated if the STAT option is used)

<xxx>.dcf (only generated if the STAT option is used)

where XXX corresponds to the name of the data file used in the run. These files will be placed in
the directory where the .bch application is located.

The format of the report contained in the .frq file is divvied up in to five columns as follows:

Category Freq CumFreq Percent CumPct
1 3432 3432.0 14.8 14.8

2 193 3625.0 0.8 15.7

Column one lists the values that were assigned during the imputations (1, 2, etc)

Column two shows the frequency (that is, the total number of times) each value was assigned
(i.e., number 2’ was assigned 193 times)

Column three displays cumulative totals of the "Freq" column

Column four indicates what percentage each imputation represents from the total number of
imputations made (i.e., number ‘2’ was imputed 193 times, representing barely one percent
(0.8) of the total number of imputations made)

Column five lists the cumulative totals of the "Percent" column

Code Example:
A code example of this statement can be found in the Examples/Impute folder.

Program Control Statements

Do Statement

The do statement executes one or more statements repeatedly while a logical condition is true, or
until a logical condition is no longer true.

Format:
do [[varying] var = expression] while/until condition [by expression]
stat enents;

enddo;
[]indicates that this part is optional.
Example:
HEAD = O;
do varying i = 1 until HEAD > 0 or i > totocc(PERSON)

if RELATIONSHI P(i) = 1 then

139

HEAD = i ;
endi f;
enddo;

This same example could be rewritten using the while condition as follows:

HEAD = O;
do varying i = 1 while HEAD = 0 and i <= totocc(PERSON)
if RELATIONSHIP(i) = 1 then
HEAD = i;
endi f;
enddo;

It is purely a matter of preference as to which method should be used.

Description:
The do statement executes one or more statements repeatedly, in a loop, while a logical
condition is true or until a logical condition is no longer true. The do and enddo keywords are
required. You must use a while or until phrase to terminate the loop. The condition is
evaluated on each repetition of the loop before any of the statements within the loop are
executed.

When the while option is used, it means the statements within the do are executed while the
condition remains true. That is, if the condition is true, the statements are executed. If the
condition becomes false, execution moves to the first statement following the enddo keyword.

When the until option is used, the statements within the do are executed until the condition
becomes true. That is, if the condition is false the statements are executed. If the condition
becomes true, execution moves to the first statement following the enddo keyword.

The by phase adds the indicated number or numeric expression (expression) to the variable
after each repetition of the loop. If the by phrase is present, at the end of each repetition of the
loop, the expression is evaluated. The result of the expression is added to the numeric
variable in the varying clause. If the by phrase is omitted, 1 is added to the variable at the end
of each repetition of the loop. For example, if you wanted to process only odd-numbered
records, you could increment your loop by 2.

In the varying clause, the variable must be a numeric variable. The variable assignment is
performed once, before the first repetition of the loop. The varying keyword has no affect on
the command, and so may be omitted.

See Also:
for, while , if

Exit Statement

The exit statement terminates a procedure or function before normal processing is expected to
end.

Format:
exit;

Example:
function FI RST_WOVAN() ;

140

FI RST_WOVAN = 0;

doi =1 while i <= HH_MEMBERS
if SEX(i) = 2 then
FI RST_WOWAN = i ;
exit; { exit the function, we've found our first woman! }
endi f;
enddo;

end; { end the function }

Description:

When the exit statement is executed, processing stops for the current procedure or user-
defined function, and control is passed to the next procedure or user-defined function.

See also: skip case, stop statement

For Statement

The for statement loops through multiple records or items.

Format:

for numvar in group do
statenents;
enddo;

Example:
PROC QUEST
spouse = 0,
for i in PERSON _EDT do
if relationship = 2 and spouse = 0 then
spouse = i;
endi f;
enddo;

if not spouse in 0,2 then
for i in PERSON_EDT do
errnmsg ("Person %l s relationship=%",i, relationship);
enddo;
endi f;

Description:

The for statement executes one or more statements repeatedly within the loop for each
occurrence of a multiply-occurring record or item named by group. In our example above,
PERSON_EDT (i.e., the number of people in a household) would control how many times the for
loop is executed.

num-var contains the current occurrence being examined. It cannot be changed inside the
loop, but it can be referenced. lIts starting value will be always be 1, and its ending value will
be determined by the number of occurrences of the item or record named. So, for example, in
our example above, if there were five people in the household, the loop would execute five
times.

The for statement should be used outside of the controlling item named by group. Note in the
example above that the code is executed in the QUEST procedure. It should not be located in
the PROC PERSON_EDT, or any of the data items in that record.

See Also: do, while

141

If Statement
The if statement executes statements conditionally.

Format:

if condition then
st at enent s;

[el seif condition then
statenments; |

[el se
statenents; |

endi f;

[]indicates that this part is optional.

Example:

if X =3 then
Z = 6;

elseif x in 4:5o0r y in 7:9,12 then
z =7,

el se
z = 8;

endi f;

Description:
The if statement executes different statements based on the value of condition. The condition
following the if command is evaluated. If the condition is true, then the statements following it
are executed and execution moves to the first statement after the endif keyword. If the
condition is false, execution moves to the first elseif keyword or the else keyword (if there are
no elseif keywords).

The elseif blocks are evaluated in the same way as the first if block. When CSPro finds a
condition that is true it executes the statements following it and moves to the first statement
after the endif keyword. If all the conditions are false, the statements following the else
keyword are executed. If none of the conditions are true and there is no else keyword,
execution moves to the first statement after the endif keyword without the execution of any
statements within the if statement.

Every if statement must contain an endif keyword. However, elseif keywords do not require
extra endif keywords. The statements within the if statement can be any humber of CSPro
statements.

If a condition contains an inequality (e.g., >, <, >=, <=) and one of the values tested in the

inequality is a special value (e.g., MISSING, NOTAPPL, or DEFAULT), the result of the
condition is false and execution skips to the statement following the else.

While Statement

The while statement executes one or more statements repeatedly while a logical condition is
true.

142

Format:
whil e condition do
st at enent s;
enddo;

Example:
i =1
NunPeopl e = totocc (Person);
while i <= NunPeopl e do
if rel(i) = notappl and sex(i) = notappl and age(i) = notappl then
del ete (PERSON(i)); { renove "blank" popul ation records }
el se
i =i +1; { only increnent i if we DONY T del ete soneone }
endi f;
enddo;

Description:
The while statement executes one or more statements repeatedly, in a loop while the logical
condition is true. The while and enddo keywords are required. Unlike the do statement, the
index is not automatically incremented—therefore, be sure to remember to increment (or
decrement) your variables as needed to ensure termination of the loop. The condition is
evaluated on each repetition of the loop before any of the statements are executed.

See Also:
do, for , if

Data Entry Statements and Functions

Accept Function
The accept function returns the number of a choice from a list made by the data entry operator.

Format:
i = accept(heading, opt-1, opt-2[,...opt-n]);

Example:
PROC UR
pr epro
i = 0;
do until i in 1:2
i = accept("Area Designation?", "Uban", "Rural");
enddo;
$ =1,
noi nput ;

Description:
The accept function displays a menu with the heading and list of choices (opt-1, opt-2, etc.).
The operator can move the down or up arrow keys to select the desired options and press
Enter. The operator can also use the mouse to click on the desired option.

Return value:
The function returns the number of the option selected: 1 for the first option, 2 for the second
option, etc. The value 0 is returned if the Esc key is pressed.

143

See Also:
accept, do, noinput

Advance Statement
The advance statement moves forward field-by-field to a specified field during data entry.

Format:
advance [to] field-naneg;

[]indicates that this part is optional.

Example:
FI RST_WOVAN = O;
doi =1 while i <= totocc(PERSON)
if SEX(I) = 2 then
FI RST_WOWAN = i ;
advance to CHILD;
endi f;
enddo;

Description:
The advance statement moves forward field-by-field to the specified field executing preprocs
and postprocs as it goes. It acts as though the Enter were pressed repeatedly until either the
specified field appears or one of the procedures executed during the advance goes to a
different field.
Note that the advance statement behaves differently from the skip statement.

See Also:
skip, do, if, totocc

Demode Function

The demode function returns the current data entry mode.

Format:
i = denode();
Example:
if denpde() = add then
V103 = 3;
endi f;
Description:

There are three data entry operator modes: add, to input new cases, and modify, to change
cases that have already been entered, and verify, to reenter the cases checking for
inconsistencies between the first and second entry. The demode function returns a value of
add, modify, or verify depending on the current data entry mode. The demode function is
often used to limit the execution of certain statements to a mode; for example, initialization of
variables might be performed in add and verify mode, but left unaltered for modify mode.

144

Return value:
The function returns an integer value of 1, 2 or 3:

1 corresponds to add mode
2 corresponds to modify mode
3 corresponds to verify mode

Editnote Function
The editnote function displays the data entry field note box for adding or changing.

Format:
[s =] editnote();

[]indicates that this part is optional.

Example:
PROC COOKI NG
if $ =9 then
OTHER = editnote();
endi f;

Description:

The editnote function displays the note entry dialog box for adding or changing the note for the
current field. You can use this function to force the collection of note text under program control.
The operator can always create or edit a note manually by pressing Ctrl+N.

Notes are stored in a file called <data file name>.NOT.

Return value:
The function returns a string, representing the contents of the field's note. If there is no note
associated with the field, the string will be empty.

See also: Getnote, Putnote

Endlevel Statement
The endlevel statement ends data entry for the current level of the current questionnaire.

Format:
endl evel ;

Example:
if MORE_WOMEN = O then
endl evel ;
endi f;

Description:

The endlevel statement ends data entry for the current level of the current questionnaire. The
effect of this statement depends on where it is used.

145

If endlevel is used in a field, roster, or form procedure, all remaining procedures within that
level are skipped and control passes to the level postproc.

If the endlevel statement is executed in a level preproc or postproc, control passes to the
postproc of the next highest level. If it is used in the highest level postproc, control passes to
the form file’s postproc (if there is one), and then data entry is terminated for the current case.

Note: In system-controlled applications, CSPro will continue to add cases at the lowest level of a
multiple-level dictionary until it is told to stop by endlevel. Therefore, an endlevel statement
should be used in the postproc of the lowest level to end data entry at that level.

Endgroup Statement

(Note: this function has superceded the endsect statement. endsect will continue to work, but is
being dropped in favor of endgroup.)

The endgroup statement ends data entry for the current record.

Format:
endgr oup;

Example:
if KIDSBORN = 0 then
endgr oup;
endi f;

Description:
The endgroup statement finishes data entry for the current group (roster or multiply-occurring
form) in a data entry application. It can not be used in a batch application. If the endsect
statement is used in an item procedure, it causes an automatic skip to the postproc of the
current group/record. If the endgroup statement is executed in the preproc of the
group/record, the entire group/record is skipped and control passes to the group/record’s
postproc.

Code Example:
A more thorough example of this statement can be found in the Examples\ltemDrivenDE
folder.

Enter Statement
The enter statement enters data from a secondary form file.

Format:
enter formfil e-nanme

Example:
if V108 = 6 then
ent er OTHERS;

endi f;

Description:

The enter statement allows the use of a secondary form file to enter data to a secondary data
file. The form-file-name is the name of the secondary form file you want to use. The

146

secondary form file must be part of your data entry application. To see the name of form files,
from the View menu make sure Names in Tree is checked or press Ctrl+T.

Getnote Function
The getnote function returns the field note string for the current field.

Format:
s = getnote()

Example:
PROC BI RTH_PLACE
if length(getnote()) > 0 then
FLD NOTE = editnote();
endi f;

Description:
The getnote function returns a string containing the note for the current field. If there is no note,
the length of the string will be 0.

Notes are stored in a file called <data file name>.NOT.

Return value:
The function returns a string containing the note text.

See also: Putnote, Editnote , if, length

Killfocus Event

The killfocus statement indicates that the following statements are executed when a form, roster,
or field stops being active.

Format:
killfocus

Example:
PRCC SEX
{ preproc would go here, if desired }
{ onfocus would go here, if desired }
killfocus
if ($ =2 and AGE < 5) then
reenter;
endi f;
{ postproc would go here, if desired }

Description:
A killfocus procedure can be coded in a proc for any form, roster, or field data entry applications.
Killfocus procedures are not executed in batch applications.

Statements in a killfocus procedure are executed whenever you move off of the object in which
they are coded. If postproc statements are executed, they are executed after killfocus
statements. Killfocus statements are executed when you complete an object; that is, flow off
of it either by logic or by operator intervention, such as clicking off it with the mouse, manually

147

skipping from it, or backtabbing from it. They are also executed when you perform noinput of a
field or when the field is protected.

See Also: onfocus, proc, preproc, postproc, Events, Order of Executing Data Entry Events,
Order of Executing Batch Edit Events, reenter , if

Noinput Statement
The noinput statement prevents input for the current field during data entry.

Format:
noi nput ;

Example:
PROC Q102
preproc
if QLO1 <> 1 then
noi nput ;
endi f;

Description:
The noinput statement prevents input of a field during data entry. The noinput statement can
only be coded in the preproc or onfocus procedures.

When the statement is executed in a preproc, control passes directly from the field's preproc to
the field’s postproc, executing the onfocus and killfocus procedures if present and performing
the item range check, but NOT requesting input of the field. When the statement is executed
in an onfocus, control passes directly from the field's onfocus to the field’s postproc, executing
the killfocus procedure if present and performing the item range check, but NOT requesting
input of the field. The field is on the data entry path even though entry is prevented.

The effect of the noinput statement is similar, but not identical, to that of a protected field. If a
noinput statement is used it is possible to backtab to the field. It is not possible to backtab to a
field that is protected.

Onfocus Event

The onfocus statement indicates that the following statements are executed when a form, roster,
or field becomes active.

Format:
onf ocus

Example:
PRCC TOTAL_I| NCOVE
{ preproc would go here, if desired }
onf ocus
TOTAL_TEMP = WAGES + OTHER
{ killfocus would go here, if desired }
{ postproc would go here, if desired }

Description:

148

An onfocus procedure can be coded in a proc for any form, roster, or field data entry applications.
Onfocus procedures are not executed in batch applications.

Statements in an onfocus procedure are executed whenever you move onto the object in
which they are coded. If preproc statements are executed, they are executed before onfocus
statements. Onfocus statements are executed when you move backward onto an object
either via the reenter statement, moving backwards to it with the cursor, or backtabbing to it.
They are also executed when you perform noinput of a field or when the field is protected.

See Also: killfocus, proc, preproc, postproc, Events, Order of Executing Data Entry Events,
Order of Executing Batch Edit Events

Putnote Function
The putnote function set the data entry field note to a given value.

Format:
b = putnote(string);

Example:
PROC COCKI NG
if $ <> 9 then
put note("");
endi f;

Description:
The putnote function places a string in the note for the current field. If the string is empty, there
fill be no note for the field.

Notes are stored in a file called <data file name>.NOT.

Return value:
The function returns a logcial value of 1 (true) if a case is found and 0 (false) otherwise.

See also: Getnote, Editnote

Reenter Statement
The reenter statement forces the data entry operator to re-enter a field.

Format:
reenter [field-nane];

[]indicates that this part is optional.

Example:
if KIDS =1 & BOYS =0 & GQRLS = 0 then
reenter KIDS;
endi f;

Description:

The reenter statement is used to force the entry operator to reenter the datum for the current
variable, or for a variable that was entered earlier.

149

Field-name specifies the field to be reentered. If no field-name is specified, the current field
must be reentered. Field-name must be earlier on the data path than the current variable. If it
isn't, an error message will be displayed during data entry and data entry will be aborted.

When a reenter statement is executed, the preproc for field-name will not be executed. If field-
name is on a different form from the current variable, that form will be displayed automatically.
The postproc of field-name will be executed normally after field-name has been reentered.

[When the reenter statement executes, all fields between the current field and field-name are
removed from the data path and are displayed in yellow. Pressing the ENTER or TAB key will
confirm previously entered information and change the color to green. If reentering a field
changes the data path, any previously entered fields that are not on the new data path will
remain displayed in yellow and will not be saved when data entry ends for that questionnaire.]

Selcase Function
The selcase function allows a data entry operator to select and load a case from an external file.

Format:
b = sel case(ext-dict-nane, al phanuneri c-expression[, offset]);

[]indicates that this part is optional.

Example:
K = sel case(LOOKUP, concat (PROV, DI ST));

Description:
The selcase function can only be used in data entry applications. It searches the index of the
external file named by ext-dict-name for all cases whose keys match the criterion specified by
alphanumeric-expression. If two or more matching keys are found, they will be presented to
the entry operator in a display box. Using a highlight bar, the operator can select one of the
keys. The case identified by that key is then read into memory. If only one key is found, the
case with that key will be read into memory without operator input.

The offset tells CSPro the number of characters, beginning with the first character of the key,
that should be suppressed upon presentation.

Return value:
The function returns a logical value of true if a key is selected and false otherwise.

Skip Statement
The skip statement jumps to a specified field during data entry.

Format:
skip [to [next]] field-naneg;

[]indicates that this part is optional.

Example 1:
if Q05 <> 2 then
skip to Q@307;

endi f;

150

Example 2:
PROC (203
preproc
if @02 <> 1 then
skip to next QO01;
endi f;

Description:
The skip statement skips to the specified field. If the field has multiple occurrences, either
record or item, the occurrence number must be specified to skip to the correct occurrence.

The next keyword skips to the next occurrence of field-name where field-name is a multiple
occurrence field. If field-name is in the same record or group as the current field, control will
move to the next occurrence of field-name. If field-name is not in the same record or group as
the current field, control will move to the first occurrence of field-name. Occurrence numbers
cannot be used with the next keyword.

Note in Example 2 above, that if the skip occurs the resultant value of Q203 will be notappl.

Field-name can be located in any record at the same level as the current field but it cannot be
located at a different level. Field-name must be the name of a field that has not yet been
entered. If field-name has already been entered an error message will be displayed during
data entry and data entry will be aborted.

When a skip statement is executed, the preproc of field-name, if any, will be executed. None of
the statements between the skip statement and the preproc of field-name will be executed.
Skipped fields are assigned the special value of NOTAPPL.

Note that the skip statement behaves differently from the advance statement.

Visualvalue Function
During data entry, the visualvalue function returns the value of a data item prior to it's input.

Format:
i = visual val ue(nuneric-item;

Example:
PROC UR
prepr oc
if not visualvalue($) in 1:2 then
do until visualvalue($) in 1:2
$ = accept("Area Designation?", "Urban", "Rural");
enddo;
noi nput ;
endi f;

Description:
The visualvalue function is used to access the contents of a data item before the data item
has been keyed. In the example above, the value of UR is being examined in the preproc of
the item, that is, before any input can be attempted.

Return value:
The function returns the numeric of value of the item.

151

See Also:
accept, if, do, noinput

Batch Edit Statements

Skip Case Statement
The skip case statement ends processing of the current case in a batch edit run.

Format:
ski p case;

Example:
if totocc(HOUSING > 1 then
errmsg(" Too nmany housing records");
ski p case;
endi f;

Description:
The skip case statement ends batch edit processing of the current case and skips to the next
case in the input file. If an output file is specified, the skipped case is not placed in the output
file.

See also: Stop, Exit, errmsg, if, totocc

Stop Statement
The stop statement ends a batch edit run before the last case is processed.

Format:
st op;

Example:
i f TOTAL_ERRORS > 100 then
st op;
endi f;
Description:
The stop statements ends batch edit processing. If an output file is specified, neither the
current case nor subsequent cases are placed in the output file.

See also: Skip case, exit statement

Numeric Functions

Cmcode Function

The cmcode function returns the number of months since the beginning of the centry given a
month and year.

152

Format:
i = cntode(nonth, year);

Example 1:
XMONTH = 06;
XYEAR = 81;

DATE = cntode(XMONTH, XYEAR) ;

The value of DATE for the given parameters June 1981, would be (81 x 12) + 6 = 978.

Example 2:
XMONTH = 2;
XYEAR = 2000;

DATE = cntode(XMONTH, XYEAR) ;

Description:
The cmcode function returns the century month code of the given date by the month and year
parameters. The century month code is the number of months since January 1900 (the
century month code for January 1900 = 1). It is calculated by multiplying the number of years
between the parameter year and 1900 by twelve, then adding the value of parameter month.

The cmcode function returns the value 9999 if the month is less than one or greater than
twelve, or if either the month or year are equal to any of the special values DEFAULT,
MISSING, or NOTAPPL.
Cmcode will accept either 2- or 4-digit years. If a 2-digit year is used, the cmcode function
assumes that the year is in the 20th (i.e., 19xx) century. Four-digit years can be used for years in
the 20th or 21st century.

Return value:
The function returns the number of months as an integer.

Exp Function

The exp function returns the value of e raised to a given power.

Format:

d = exp(numeric-expression);
Example:

X = exp(Y);
Description:

The exp function raises the value of e to the power given by numeric-expression. The value of
e is the Napier constant, the basis of natural logarithms.

Return value:

The function returns a decimal number power. If the value of numeric-expression is a special
value (MISSING, NOTAPPL, or DEFAULT), the function returns that value.

153

Int Function

The int function returns the integer portion of a numeric expression.

Format:
i = int(nuneric-expression);
Example:
X =int(5/ 3);
The value of x would be 1.
Description:

The int function returns the integer portion of the result of the numeric-expression.
Return value:

The function returns an integer value. If the value of numeric-expression is a special value
(MISSING, NOTAPPL, or DEFAULT), the function returns that value.

Log Function

The log function returns the base-10 logarithm of a numeric expression.

Format:

d = log(numeri c-expression);
Example:

X = log(Y);
Description:

The log function calculates the base-10 logarithm of numeric-expression.
Return value:
The function returns a decimal number logarithm. If the value of numeric-expression is a

special value (MISSING, NOTAPPL, or DEFAULT), the function returns that value. If the value
of numeric-expression is negative, the special value DEFAULT is returned.

Random Function
The random function returns a pseudo-random integer in a given range.

Format:
i = random(m n-val ue, max-val ue);

Example:
NUM = random(1, 100);

Description:

154

The random function returns a uniformly distributed random integer between min-value and
max-value. Min-value and max-value are numeric expressions which must have integer
values in the range -32767 to +32767. Use the seed to initialize the random function.

Return value:
The function returns an integer random value. The function will return a value DEFAULT if

min-value is greater than max-value or if either limit is equal to one of the special values
DEFAULT, MISSING, and NOTAPPL.

Seed Function
The seed function initializes the random number generator to a particular starting place.

Format:
b = seed(numeric-expression);

Example:
K = seed(1009);

Description:

The seed function is used to determine the first value generated by the random function. For

best results, numeric-expression should be set to a prime number, such as 1009.

Return value:
The function returns a logical value true if the seeding is successful, false otherwise.

Sqrt Function

The sqrt function returns the square root of a numeric expression.

Format:

d = sgrt(numeric-expression);
Example:

X =sqrt(VY);

X = sqrt(12);
Description:

The sqgrt function returns the square root of numeric-expression. The result of the numeric-
expression should be a positive value.

Return value:

The function returns a decimal value of the square root of the expression. If the value of the
numeric-expression is a special value (e.g., MISSING, NOTAPPL, or DEFAULT), the function
returns the special value given. If the value of the numeric-expression is negative, the function

returns the special value DEFAULT.

155

String Functions

Compare Function
The compare function returns alphabetical order (i.e., collating sequence) of the two strings.

Format:
i = compare(string-1,string-2);

Example 1:
ORDER = conpar e(RESPONSE, ANSVER) ;

where ORDER is an integer variable and RESPONSE and ANSWER are string variables.

Example 2:
Y = conpare("survey", "census");

where Y is an integer variable and the arguments are string constants.
Description:
The compare function compares the two strings character by character to determine the

alphabetical (collating sequence) order of the strings.

If string-1 and string-2 are of different lengths, the compare function will pad the shorter string
with blanks for the comparison.

Return value:
The function returns an integer value of

-1 if string-1 would be listed alphabetically before string-2
0 if the strings are identical
1 if string-1 would be listed alphabetically after string-2

Note:
Direct string comparisons can also be made. For example, the following code is permissible
(and in fact preferable to usage of the compare function):

if stringl < string2 then

<st at enent s>;
endi f;

Concat Function

The concat function joins two or more strings into one string.

Format:
s = concat(string-2,string-2[,...,string-n]);
[]indicates that this part is optional.
Example:
PROC GLOBAL

al pha 30 FI RST_NAMVE, LAST_NAME, FULL_NAME;

PROC ABC

156

FI RST_NAVMVE = "John"

LAST_NAME = "Henry"
FULL_NAME = concat (strip(FI RST_NAME), " ",
Results in the following values:
FI RST_NAME = "John
LAST_NAME = "Henry
FULL_NAME = "John Henry
Description:

stri p(LAST_NAME)) ;

The concat function concatenates the values of two or more strings. The strings can be
alphanumeric items, text strings, or functions which return strings.

Return value:

The function returns the concatenated string.

Edit Function

The edit function converts a number to a string.

Al

A3

A4
A5
A6

n 87"
"0087"
" 087"

"oom
" 000"

Format:
s = edit(edit-pattern, nuneric-expression);
Example 1:
X = 87;
Al = edit("z2229",X); yi el ds
A2 = edit("9999", X); yi el ds
A3 = edit("Z2999", X); yi el ds
Example 2:
Y = 0;
A4 = edit("Z229",Y); yi el ds
A5 = edit("999",VY); yi el ds
A6 = edit("z22Z2",Y); yi el ds
Example 3:

A = edit("99:99: 99", sysdate());

Example 4:

A = edit("99/99/99", sysdat e(" DDMWY"));

Example 5:
A = edit("zz2z, 7722, 779", | NCOVE) ;

Description:

The edit function converts a number to a character string defined by the given edit pattern.
The edit pattern is a string containing Zs or 9s (i.e., "9999" or "ZZ9.99"). Both 9 and Z

represent a digit.

9 display a digit

Z display a digit, but if it is a leading zero, display a blank

display the decimal character

157

, display the thousands separator character
Any other character will be displayed as itself.

Return value:
The function returns a string made from the number.

See also: Tonumber , sysdate

Filename Function
The filename function returns the data file name currently associated with a data dictionary.

Format:
s = fil ename(dict-namne);

Example:
NAMVE = fil enanme(CH LE_2000);

NAME might be assigned "c:\Census2000\data\09011961.dat", if the data dictionary
CHILE_2000 was associated with that file.

Description:
The filename function returns the fully qualified name of the data file referenced by the data
dictionary with the name dict-name.

Return value:
The function returns a string containing the file name.

Getbuffer Function
The getbuffer function returns a string containing the contents of a data item.

Format:
s = getbuffer(item nane);

Example 1:
i f special (AGE) then
errmsg("Person’s Age is invalid, Age = %",
get buffer (AGE));
endi f;

Example 2:
errmsg(" Househol d Head’ s Name = %", getbuffer(NAVE(1)));

Description:
The data item may be numeric or alphanumeric. The getbuffer function always returns a string
containing the data item’s contents.

Therefore in both examples above, it does not matter whether getbuffer is used on a numeric

item (AGE), or an alphanumeric item (NAME), it will always return a string of the data item’s
contents.

158

This function is especially useful when a numeric data item in a data file contains a non-
numeric value, such as ™", "-", or "a". You cannot test the contents of the numeric data item for
alphanumeric values because CSPro stores DEFAULT as the value of any numeric data item
which contains non-numeric values. Therefore to find out what non-numeric value a data item

contains you would use the getbuffer to return the alphanumeric characters it contains.

Return value:
The function returns a string containing the data item’s contents.

Length Function
The length function returns the length of a dictionary item or a string.

Format:
i = length(string-exp);

Example:
PROC GLOBAL
al pha 30 NAME;

PRCC ABC
NAME = "John Henry"
LENL = | engt h(NAME) ;
LEN2 = length(stri p(NAME));

Results in the following values:

NAMVE = "John Henry "
LEN1 = 30
LEN2 = 10

Description:

If the string-exp is a data dictionary item, the value returned is the length of the item. If the
string-exp is the result of a function, the value returned is the length of the string returned by
the function.

Return value:
The function returns an integer length of the string.

See also:
alpha, strip

Maketext Function

The maketext function formats a text string with inserted values.

Format:
s = maketext(string-exp[,pl[,p2[,...,pn]1]);
[]indicates that this part is optional.
Example:

159

TEXT = maketext ("Sex = %", SEX);

Description:
The maketext function formats a text string with inserted values. Each parameter (e.g., pl) is
sequentially inserted into the text string. Parameters can be numeric or alphanumeric
expressions, but the type of parameter must match the type of the receiving field in the string
expression.

In the string expression

%[n]d = Insert a number and display it as an integer
%[n.d]f = Insert a number and display it as a decimal value
%[n.d]s = Insert atext string

where n is the size of the field and d is the number of decimal places to show for a number.
Numbers are never truncated. Text strings are truncated only if .d is used.
If n is positive, the insert is right justified in the size of the field. If n is negative, the insert is left
justified in the size of the field. If n is a positive number with a leading zero, the insert is right

justified in the size of the field and zero filled to the left.

When inserting a number, if n is preceded by a +, the sign of the number is always displayed.

Examples:

Value = 23456 %d 23456
%?10d 23456
%-10d 23456
%010d 0000023456
%-+10d +23456
%+010d +000023456
%f 23456. 000000

Value = 12.567 %f 12. 567
%10.3f 12. 567
%-10.3f 12. 567
%10.2f 12.57
%10.5f 12.56700
%010.3f 000012. 567
%+10.3f +12. 567
%+010.3f +00012. 567
%d 12

Value = "abcdef" %s abcdef
%10s abcdef
%-10s abcdef
%10.3s abc

%-10.3s abc

Return Value:
The function returns the formatted string.

Pos Function

160

The pos function returns the start position of a substring within the source string.

Format:
i = pos (substring, source);

Example 1:
X = pos("L","FOR THE CHI LDREN");

The value of X will be 4.

Example 2:
X = pos("DRE", " CHI LDREN");

The value of X will be 5, as this is where the substring "dre" begins in the source string.

Example 3:
X = pos("DCN', " CHI LDREN") ;

The value of X will be 0. The substring "lcn" does not exist in the source string.

Description:
The pos function searches for a pattern string within a source string. It returns the beginning
position of the first occurrence of the pattern string. The substring and source strings are
case-sensitive, therefore "children" is completely different than "CHILDREN."

Note:
Please note unless an alpha string is declared to be the exact length of the string that is being
assigned to it, any trailing character positions will be blank-filled. This can have ramifications
on your search, if you are searching for the blank character. There may be none within the
string, but it will find one at the end of your string, if your assigned string is shorter than the
space allocated to the alpha variable. In this case, you should strip the string first. The
following example should clarify this situation:

PROC GLOBAL
al pha (8) myStr;
PROC FCO
myStr = "Kids";
pos (" ", nyStr);
{ will return 5, as it finds a blank after the s’ in Kids }
pos (" ", strip (nmyStr));
{ will return 0, as it does not find a blank, since the string
has been stripped of all trailing blanks before the search
begi ns }

Return value:
The function returns an integer position. If the pattern string is not found, 0 is returned.

See also:
poschar, alpha statement, strip

Poschar Function

161

The poschar function returns the location of the first character found from the pattern string
within the source string.

Format:
i = poschar (pattern, source);

Example 1:
X = poschar ("L"," CH LDREN");

The value of X will be 4.

Example 2:
X = poschar ("LCN', " CH LDREN") ;

The value of X will be 1, as ‘c’ is the first character encountered in the source string.

Description:
The poschar function searches for a collection of characters within the source string. It returns
the beginning position of the first occurrence of the pattern string. The substring and source
strings are case-sensitive, therefore "children” is completely different than "CHILDREN."

Note:
Please note unless an alpha string is declared to be the exact length of the string that is being
assigned to it, any trailing character positions will be blank-filled. This can have ramifications
on your search, if you are searching for the blank character. There may be none within the
string, but it will find one at the end of your string, if your assigned string is shorter than the
space allocated to the alpha variable. In this case, you should strip the string first. The
following example should clarify this situation:

PROC GLOBAL
al pha (8) myStr;
PROC FCO
myStr = "Kids";
poschar (" ", myStr);
{ will return 5, as it finds a blank after the *s’ in Kids }
poschar (" ", strip (nyStr));
{ will return 0, as it does not find a blank, since the string
has been stripped of all trailing blanks before the search
begi ns }

Return value:
The function returns an integer position. If no characters from the pattern string are found, 0 is
returned.

See also:
pos, alpha statement, strip

Strip Function
The strip function removes trailing blanks from a string.

Format:
s = strip(string-exp);

162

Example:
PROC GLOBAL
al pha(30) FI RST_NAME, LAST_NAME, FULL_NAME;

PRCC ABC
FI RST_NAME = "John";
LAST_NAME = "Henry";
FULL_NAME = concat (strip(FIRST_NAME)," ", strip(LAST_NAME));
LEN = Il engt h(stri p(FULL_NAME));

Results in the following values:

FI RST_NAME = "John "
LAST_NAME = "Henry "
FULL_NAME = "John Henry "
LEN = 10

Description:

The strip function removes trailing blanks from the given string. The result of a strip function is
often used as a parameter to other functions (such as the length and, concat functions above).

Return value:
The function returns a string.

See also:
alpha, concat, length

Tonumber Function
The tonumber function converts a string to a number.

Format:
d = tonunber(string-exp);

Example:
n = tonunber (CASEI D) ;

Description:
The tonumber function converts a string into a number. Leading blanks in the string are
ignored. The conversion stops at the first non-numeric character.

Return value:
The function returns a decimal number. If the string begins with a non-numeric character, the
function returns DEFAULT.

See also: Edit
Multiple Occurrence Functions

Average Function
The average function returns the average of an item that occurs multiple times.
Format:

d = average(nultiple-item[where condition]);

163

[]indicates that this part is optional.

Examples:
AVG_ | NCOVE = aver age(| NCOVE) ;
AVG _FEMALE | NCOVE = average(| NCOVE where SEX = 2);

Description:
During data entry, the result of the average calculation depends on where the statement is
located. If the average function is executed prior to the form or roster containing the item, it
returns DEFAULT. If it is executed within the form or roster containing the item, it returns the
average up to the current occurrence number. If it is executed after the form or roster
containing the item, it returns the average for all occurrences of the item.

During batch edit, average returns the average value for all occurrences of the item,
regardless of the statement's placement in the program.

If a where condition is included, the function returns the average of the occurrences for which
the condition is true.

If the value of an occurrence of the item is a special value (DEFAULT, MISSING, or
NOTAPPL), the occurrence will not be included in the calculation. If none of the occurrences
have values other than special values, DEFAULT is returned.

Return value:
The function returns the decimal value of the average.

Count Function
The count function returns the number of occurrences for a repeating form or roster.

Format:
i = count(nultiple-item[where condition]);

[]indicates that this part is optional.

Examples:
TOTAL_PERSONS = count (PERSONS) ;
NUM_CHI LDREN = count (PERSONS where RELATIONSHI P = 3);

Description:
During data entry, the occurrence value is updated after the postproc of the first field within a
repeating form or roster is executed. If the count function is executed prior to the form or
roster, it returns 0. If it is executed from a field within the form or roster, it returns the current
occurrence number. If it is executed after the form or roster, it returns the total number of
occurrences in the form or roster.

During batch editing, count always returns the total number of occurrences in the multiply-
repeating item/record.

If a where condition is included, the function returns the number of occurrences for which the
condition is true.

164

If the where condition is not included, the count function and the noccurs function return the
same result.

Return value:
The function returns an integer count value.

See also: Noccurs, Soccurs, Totocc, Curocc

Curocc Function
The curocc function returns the current occurrence number for a roster, form, or record.

Format:
i = curocc([group]);

[]indicates that this part is optional.

Examples 1:
PRCC RELATI ON
if curocc(PERSON REC) = 1 then
if (RELATION <> 1) then
errmsg("First person nust be head of househol d.");
endi f;
endi f;

Description:
During data entry, you may determine the current occurrence of a roster or form. If the form
does not repeat, curocc will return 1 (a roster must always repeat). The current occurrence
can be determined by calling the curocc function from any field contained within the roster or
form. If it is executed prior to the roster or repeating form it names, it returns 0. If it is invoked
after entry of the roster or form has completed, it returns the total number of occurrences
keyed.

During batch editing, you may determine the current occurrence of a record or repeating item.

The curocc of a record will always be the total number of occurrences found. The curocc of a

repeating item will be it's sequence number within the group.

Return value:
The function returns an integer occurrence number.

See also: Totocc, Noccurs, Soccurs, Count, if, errmsg

Delete Function
The delete function removes a record or item occurrence from the current case.

Format:
b =del et e(group[occ]);

[occ] is required for multiply-occurring records or items, and
is not required for singly-occurring records or items

165

Example 1 (for multiply-occurring records):
i = 1;
NunPeopl e = totocc (PERSON REC);
while i <= NunPeopl e do

if rel(i) = notappl and

sex(i) = notappl and

age(i) = notappl then

del ete (PERSON REC(i)); { renove "blank" popul ation records }
el se

i =i +1; { increnent i only if we DON T del ete soneone }
endi f;

enddo;

Example 2 (for singly-occurring records):
if hOl type = 6 then { person is honel ess, delete record }
del ete (HOUSING; { notice the absence of a subscript }
endi f;

Description:
The delete function removes incomplete or otherwise unneeded records or item occurrences.
It can be used to remove singly- or multiply-occurring records, though if the record is non-
repeating (such as the housing record), then it must be defined as required=no in the
dictionary. This function was primarily intended for batch applications. It should be used with
extreme caution in data entry applications because of possible conflicts between the
operator’s actions and the program logic.

Return value:
The function returns a logical value 1 (true) if successful and O (false) otherwise.

See also:
if, totocc, while

Insert Function
The insert function creates a record or item occurrence in the current case.

Format:
b=insert(group[occ]);

[occ] is required for multiply-occurring records or items, and
is not required for singly-occurring records or items

Example 1 (for multiply-occurring records):

In the following example there is a data item in the housing record called h13_persons, which
contains the total number of people living in the household. We have decided that if the number
of population records found in the household is less than this variable, we will insert the missing
number of population record(s).

NunPer sons = count (PERSON_REC);
do varying i=NunPersons+1l while i <= h1l3_persons

insert (PERSON _REC(i)); { note the need for a subscript }
enddo;

166

It makes no difference if the population record has been defined in the dictionary as required or
not. What is important is that it was defined as a multiply-occurring record.

Example 2 (for singly-occurring records):

For this example, we are processing a datafile that did not require housing records to be present.
However, now we want to force the existence of housing records. We could implement this as
follows:

if totocc(HOUSING = 0 then
insert (HOUSING ; { note the absence of a subscript }
endi f;

To accomplish this, the housing record must be set to required=no in the dictionary. You can not
use this function for a singly-occurring record when the property setting of required=yes.

Description:

The insert function inserts missing or otherwise needed data records or item occurrences. lItis
primarily intended for use in batch applications. It should be used with extreme caution in data
entry applications because of possible conflicts between the operator’s actions and the program
logic.

Return value:
The function returns a logical value 1 (true) if successful and O (false) otherwise.

See also:
do, iflf_Statement, totoccTotocc_Function, count

Max Function
The max function returns the maximum value of an item that occurs multiple times.

Format:
d = max(multiple-item|[where condition]);

[]indicates that this part is optional.

Examples:
MAX_| NCOVE = nmax(| NCOVE) ;
MAX_FEMALE_| NCOMVE = max(| NCOVE where SEX = 2);

Description:
During batch editing, if the values of the items are not changed, the result of the maximum
calculation is the same, no matter where the function is located.

During data entry, the result of the maximum calculation depends on where the statement is
located. If the max function is executed prior to the form or roster containing the item, it
returns DEFAULT. If it is executed within the form or roster containing the item, it returns the
maximum value up to the current occurrence number. If it is executed after the form or roster
containing the item, it returns the maximum value for all occurrences of the item.

During batch editing, max always returns the maximum value for all occurrences of the item.

167

If a where condition is included, the function returns the maximum value of the occurrences for
which the condition is true.

If the value of an occurrence of the item is a special value (DEFAULT, MISSING, or
NOTAPPL), the occurrence will not be included in the calculation. If none of the occurrences
have values other than special values, DEFAULT is returned.

Return value:
The function returns a decimal maximum value.

See Also: Min

Min Function
The min function returns the minimum value of an item that occurs multiple times.

Format:
d = mn(multiple-item[where condition]);

[]indicates that this part is optional.
Examples:
M N_I NCOME = mi n(| NCOVE) ;
M N_MALE | NCOVE = mi n(| NCOVE where SEX = 1);
Description:
During data entry, the result of the minimum calculation depends on where the statement is
located. If the min function is executed prior to the form or roster containing the item, it returns
DEFAULT. Ifitis executed within the form or roster containing the item, it returns the minimum
value up to the current occurrence number. If it is executed after the form or roster containing
the item, it returns the minimum value for all occurrences of the item.
During batch editing, min always returns the minimum value for all occurrences of the item.

If a where condition is included, the function returns the minimum value of the occurrences for
which the condition is true.

If the value of an occurrence of the item is a special value (DEFAULT, MISSING, or

NOTAPPL) the occurrence will not be included in the calculation. If none of the occurrences
have values other than special values, DEFAULT is returned.

Return value:
The function return a decimal minimum value.

See also: Max

Noccurs Function
The noccurs function returns the number of occurrences of a roster, form, or record.

Format:
i = noccurs(group);

Example:

168

TOTAL_PERSONS = noccur s(PERSON) ;

Description:
During data entry, you may determine the current occurrence of a roster or form. If the form
does not repeat, noccurs will return 1 (a roster must always repeat). If the noccurs function
is executed prior to the roster or form it names, it returns 0. If it is executed from a field within
the roster or form, it returns the current occurrence number. If it is executed after the form or
roster, it returns the total number of occurrences in the form or roster.
During batch editing, noccurs always returns the total number of occurrences in the group.
noccurs is equivalent to the count function without the where phrase.

Return value:
The function returns an integer occurrence number.

See also: Totocc, Curocc, Soccurs, Count

Soccurs Function
The soccurs function returns the total number of occurrences of a record.

Format:
i = soccurs(record-nane);

Example:
NUM HH MEMBERS = soccur s(PERSON REC) ;

Description:
During data entry, you may determine the current occurrence of a record. If the record does
not repeat, soccurs will return 1. If the soccurs function is executed prior to the record it
names, it returns 0. If it is executed from a field within the record, it returns the current
occurrence number. If it is executed after the entry of the record has completed, it returns the
total number of occurrences of the record.
During data entry this function is equivalent to the noccurs function.
During batch editing, soccurs always returns the total number of record occurrences found.

Return value:
The function returns an integer value of the number of occurrences.

See also: Totocc, Curocc, Noccurs, Count

Sort Function
The sort function sort occurrences of records or items based on the value of an item.

Format:
b=sort(group using itenj;

Example:

169

Sort (PERSON usi ng LI NE_NUM ;

Description:

The sort function sorts the multiple records or items in the specified group in ascending order
using the specified data item as the sort key. The sort key item must be contained within the
record or item sorted.

Sort is primarily intended for use in batch applications. It should be used with extreme caution in
data entry applications because of possible conflicts between the operator’s actions and the
program logic.

Return value:
The function returns a logical value 1 (true) if successful and 0 (false) otherwise.

Sum Function
The sum function returns the sum of an item that occurs multiple times.

Format:
d = sum(rmul tiple-item[where condition]);

[]indicates that this part is optional.

Example:
TOTAL_I NCOVE = sum(| NCOVE) ;
TOTAL_FEMALE_| NCOVE = sun(| NCOVE where SEX = 2);

Description:
During data entry, the result of the sum calculation depends on where the statement is located.
If the sum function is executed prior to the form or roster containing the item, it returns
DEFAULT. If it is executed within the form or roster containing the item, it returns the sum up
to the current occurrence number. If it is executed after the form or roster containing the item,
it returns the sum for all occurrences of the item.

During batch editing, sum always returns the sum for all occurrences of the item.

If a where condition is included, the function returns the sum of the occurrences for which the
condition is true.

If the value of an occurrence of the item is a special value (DEFAULT, MISSING, or

NOTAPPL) the occurrence will not be included in the calculation. If none of the occurrences
have values other than special values, DEFAULT is returned.

Return value:
The function returns a decimal value of the sum.

Totocc Function

The totocc function returns the number of multiply occurring records or the number of multiply-
occurring items in a group.

Format:
i = totocc([group]);

170

[]indicates that this part is optional.

Example 1:
if totocc(HOUSING > 1 then
errmsg("More than 1 housing record");
endi f;

Example 2:
PROC HOUSI NG
if totocc() > 1 then
errmsg("Mre than 1 housing record");
endi f;

Description:
During data entry, the occurrence value is updated after the postproc of the first field within a
repeating form or roster is executed. If the totocc function is executed prior to the entry of form
or roster, it returns 0. If it is executed from a group or field within the form or roster, it returns
the current occurrence number. If it is executed after the form or roster, it returns the total
number of occurrences in the form or roster.
During batch editing, totocc always returns the total number of occurrences in the group.

Return value:
The function returns an integer value of the number of occurrences.

See also: Curocc, Count, Soccurs, Noccurs
General Functions

Clear Function

The clear function initializes the memory values of data items defined in external files and
working storage to zero or blank.

Format:
b =clear(item1 [...,itemn]);

[]indicates that this part is optional.

Example:
K = cl ear (WORKDI CT) ;

Description:
The clear function assigns zeros to all numeric items, assigns blanks to all alphanumeric items,
and sets the number of occurrences of records or items to 0 in items item-1 to item-n. Items
item-1 to item-n can be external dictionaries, working storage dictionaries, or any component in
these dictionaries.

Return value:
The function returns a logical value 1 (true) if successful and O (false) otherwise.

Errmsg (Display) Function

171

The errmsg function displays a message on the data entry screen or writes a message to the
batch edit report.

Format 1: _
[b =] errmsg(string-exp[,pl[,p2[,...,pn]]])
[denonmrvar] [case| summary];
[]indicates that this part is optional.
| indicates that one or the other keyword may be used.
Format 2:
[b =] errmsg(nmsg-nuni, pl[,p2[,...,pn]]]) [denonrvar]

[case| sumary] ;

[]indicates that this part is optional.
| indicates that one or the other keyword may be used.
msg-num can be a number or numeric expression

Note to ISSA users: Use the errmsg function with the case keyword to replace the display
function.

Format 1 Examples:

Example 1:
errnmsg(" Head of household is % years old.", AGE);

Example 2:
errnmsg("More than 1 head of househol d") denom = PERSON_ COUNT
sunmary;

Format 2 Example:
X = errnmsg (1,"June", 30, 31);
where the message file contains the following text:
1 % has only % days. You entered %!

Note the errmsg call could have also been invoked as follows:

i =1,
X = errnmsg (i, "June", 30, 31);

Description:
The errmsg function displays a message to the user during program execution in a Data Entry
application or writes a message to a listing (.Ist) file in a Batch Edit application. If messages
are defined via the message number (msg-num), then those messages will be stored in a
message file.

Each parameter (e.g., pl) is sequentially inserted into the error message. Parameters can be
numeric or alphanumeric expressions, but the type of parameter must match the type of the
receiving field in the message text. The maximum number of parameters in an errmsg function
is 20.

In the message text
%[n]d = Insert a number and display it as an integer

172

%[n.d]f
%[n.d]s

Insert a number and display it as a decimal value
Insert a text string

where n is the size of the field and d is the number of decimal places to show for a number.
Numbers are never truncated. Text strings are truncated only if .d is used.
If n is positive, the insert is right justified in the size of the field. If n is negative, the insert is left
justified in the size of the field. If n is a positive number with a leading zero, the insert is right

justified in the size of the field and zero filled to the left.

When inserting a number, if n is preceded by a +, the sign of the number is always displayed.

Examples:

Value = 23456 %d 23456
%10d 23456
%-10d 23456
%010d 0000023456
%-+10d +23456
%+010d +000023456
%f 23456. 000000

Value = 12.567 %f 12. 567
%10.3f 12. 567
%-10.3f 12. 567
%10.2f 12.57
%10.5f 12. 56700
%010.3f 000012. 567
%+10.3f +12. 567
%+010.3f +00012. 567
%d 12

Value = "abcdef" %s abcdef
%10s abcdef
%-10s abcdef
%10.3s abc

%-10.3s abc

The denom keyword allows you to specify a denominator, so that you can show percentages
in the summary portion of the output listing. This is very useful for showing edit failure rates.
In Example 3 above, the output listing will show the number of times there was more than one
head of household divided by the number of people processed during the run. Note that it is
the responsibility of the application designer to write logic to put the proper values into the
denominator variable.

The case and summary keywords give you some control over the output listing. By default,
the output listing shows you messages case by case, and also shows you a summary of the
number of times the message was hit (with an optional denominator, described above). You
can limit the output listing to only case by case reporting, or only summary reporting by using
these keywords.

Return Value:
The function returns a logical value 1 (true) if successful and 0 (false) otherwise.

173

Special Function

The special function determines whether a variable's value is MISSING, NOTAPPL, or
DEFAULT.

Format:
b = special (nuneri c- expression);

Example:
i f special (XVAR) then
YVAR = 99;
el se
YVAR = XVAR
endi f;
Description:

The special function checks if the value of variable-name is a special value (i.e., MISSING,
NOTAPPL, or DEFAULT).

Return value:
The function returns a logical value of 1 (true) if the variable is a special value and 0 (false)
otherwise.

See also:
Special Values, if

Sysdate Function
The sysdate function returns the current system date as an integer.

Format:
i = sysdate([date-format]);

[]indicates that this part is optional.

Example 1:
If the current date is December 17, 1999, the following calls would return:

X = sysdat e(" DDMWYYY"); returns 17121999

X = sysdat e(" MWYYY"); returns 121999

X = sysdate("DD"); returns 17

X = sysdate(); returns 991217
Example 2:

If the current date is March 8, 2000, the following calls would return:

X = sysdat e(" DDMWYYY"); returns 8032000

X = sysdat e(" MWYYY"); returns 32000

X = sysdate(" MWY"); returns 300

X = sysdate("DD"); returns 8

X = sysdate(); returns 308
Description:

The date-format is an alphanumeric expression composed of a combination of DD (days), MM
(months), and/or YY or YYYY (years). YY returns the current year in two digits, while YYYY

174

returns it in four digits. The strings DD, MM and YY or YYYYY can be put together in any
order to make up a customized format. If no date-format is specified, the sysdate function will
return the date in the format "YYMMDD".

The current date can be returned as a string using the edit function as follows:
edit("99/99/ 99", sysdat e(" DDMWY")) ;

Return value:
The function returns the system date as an integer. If the date-format is invalid, the function
returns 0.

Sysparm Function

The sysparm function returns the value of the ‘parameter’ variable stipulated in the data entry or
batch edit pff file.

Format:
al phanuneri c-var = sysparnm();

Example:

PROC GLOBAL
al pha(30) MyParam

PRCC MyFi l e
preproc
MyPar am = sysparm();

Description:
The sysparm function returns the passed-in parameter as a left-justified string. A parameter
can be used in a data entry or batch edit program; merely add in the desired string to your
data entry pff file or batch edit pff file.
If no parameter was given in the pff file, then sysparm returns the null (empty) string. If the
string given in the pff file is longer than the size allocated for your program’s string variable,
then the string will be truncated.

Return value:
The function returns an alphanumeric string.

Systime Function
The systime function returns the current system time as an integer.

Format:
i = systinme();

Example:
TIME = systinme();

175

HOUR = int (TIME / 10000);

MN = int(TIME/ 100) % 100;

SEC = TI ME % 10000;
Description:

The systime function returns the system time as a six-digit integer in the form HHMMSS where
HH is the hour, MM are the minutes, and SS are the seconds.

The current time can be returned as a string using the edit function as follows:
edit("99:99: 99", systine());

Return value:
The function returns the system time as an integer.

Write Function

The write function write text to an write file.

Format:
[b =] wite(string-exp[,pl[,p2[,...,pn]]1]);
[]indicates that this part is optional.
Example:

wite("Sex = %", SEX);

Description:
The write function writes text to file that can be used as a report. Each parameter (e.g., pl) is
sequentially inserted into the write string. Parameters can be numeric or alphanumeric
expressions, but the type of parameter must match the type of the receiving field in the
message text.

If no write file is specified at run time, the write file lines are placed in the default data entry or
batch error report.

In the string expression

%[n]d = Insert a number and display it as an integer
%[n.d]f = Insert a number and display it as a decimal value
%[n.d]s = Insert a text string

where n is the size of the field and d is the number of decimal places to show for a number.
Numbers are never truncated. Text strings are truncated only if .d is used.
If n is positive, the insert is right justified in the size of the field. If n is negative, the insert is left
justified in the size of the field. If n is a positive number with a leading zero, the insert is right
justified in the size of the field and zero filled to the left.

When inserting a number, if n is preceded by a +, the sign of the number is always displayed.

Examples:
Value = 23456 %d 23456
%10d 23456

176

%-10d 23456
%010d 0000023456

%-+10d +23456
%+010d +000023456
%f 23456. 000000

Value = 12.567 %f 12. 567
%10.3f 12. 567
%-10.3f 12. 567
%10.2f 12.57
%10.5f 12.56700
%010.3f 000012. 567
%+10.3f +12. 567
%+010.3f +00012. 567
%d 12

Value = "abcdef" %s abcdef
%10s abcdef
%-10s abcdef
%10.3s abc

%-10.3s abc

Return Value:
The function returns a logical value 1 (true) if successful and O (false) otherwise.

External File Functions

Close Function
The close function closes a previously opened external file.

Format:
b = cl ose(ext-dict-name);

Example:
XK = cl ose(LOOKUP) ;

Description:
Under most circumstances neither an open or a close function is necessary to manipulate an
external file. In data entry applications, by default, an external file is opened when it is
operated on with an external file function, such as loadcase or writecase, and closed
immediately afterward. In batch applications, by default, an external file is opened at the
beginning of the run and closed at the end.

If you want to control the opening and closing of an external file, you can use the open and
close functions to do this. If you code an open function anywhere is the application logic, then
you must control ALL the opening and closing of the file

The open function opens the specified external file and leaves it open. The close function
closes an open external file.

177

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

Return value:
The function returns a logical value of 1 (true) if successful and O (false) otherwise.

See also:
open

Delcase Function
The delcase function marks a case for deletion in an external file based on a key.

Format:
b = del case(ext-dict-nane[,var-list]);

[]indicates that this part is optional.

Example:
OK = del case(GNVR31, MCLUST, MHHNUM M.I NE) ;

Description:
The delcase function marks a case for deletion in the external file described by ext-dict-name.
The case whose identifiers match var-list is the case who is marked for deletion (but not
deleted; a compact application is needed to actually delete cases marked for deletion).

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

The optional var-list defines the case identifiers in the external file. The delcase function
concatenates the variables specified in var-list to form a string whose length must be the same
as the length of the case identifier in the external dictionary. All variables in the var-list must
exist in a dictionary or working storage.

If no var-list is provided, the current values of the identifiers in memory for the external file are
used.

Return value:

The function returns a logical values of 1 (true) if a case is marked for deletion and 0 (false)
otherwise.

Find Function

The find function determines the existence of a case in an external file that matches a specified
condition.

Format:
b = find(ext-dict-nane,rel-op, al pha-ex);

Example:
OK = find(CODE, >=, "10100201");

Description:

178

The find function searches the index of an external file and determines whether any case
matches the specified condition. The position in the file is not changed, and no case is loaded
into memory.

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

The rel-op is one of the following relational operators: =, <, <=, >, or >=,

The alpha-ex is an alphanumeric expression which specifies a set of case identifiers or a key.
If the relational operators are < or <=, then the file is positioned at the case with the largest key
which satisfies the condition. If the relational operators are > or >=, then the file is positioned

at the case with the smallest key which satisfies the condition.

Return value:
The function returns a logical value of 1 (true) if a case is found and O (false) otherwise.

See also:
locate

Key Function
The key function returns the key of the case at the current position in an external file.

Format:
s = key(ext-dict-nane);

Example:
THE_KEY = key(LOOKUP) ;

Description:
The key function returns a string containing the key of the case in the current position in an
external file.

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

If there has been no previous activity on the external file and no key has been established, the
key function returns a null string.

Return value:
The functions returns a string containing the key. If no key is present, a null string is returned.

Loadcase Function
The loadcase function reads a specified case from an external file into memory.

Format:
b = | oadcase(ext-dict-nane[,var-list]);

[]indicates that this part is optional.

Example:

179

K = | oadcase(SAMPDI CT, CLUSTER, HH) ;

Description:
The loadcase function reads a case from an external data file into memory. Once the case is
loaded, all variables defined in the corresponding external dictionary are available for use.

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

The optional var-list specifies the list of variables that will identify the case to load from the
external file. This process is similar to matching files on the basis of key variables in statistical
and database software packages. Each of the variables in var-list must be defined in a
dictionary or working storage. The combined length of the variables in var-list must equal the
length of the case ids defined for the external dictionary.

The loadcase function concatenates the variables in the var-list to form a string. It then loads
the case in the external file whose case identifier matches the string constructed from var-list.

If no var-list is provided, the next logical case in the external file will be loaded. The next
logical case is defined as the case with the next sequential case identifier (in ascending order).
This will not necessarily be the next physical case in the file.

Return value:
The function returns a value 1 (true) if the case was loaded successfully, O (false) otherwise.

See also:
retrieve, writecase

Locate Function

The locate function finds but does not load a case in an external file that matches a specified
condition.

Format:
b = |l ocat e(ext-dict-nane, rel -op, al pha-ex);

Example:
K = | ocat e(CODE, >=, "10100201");

Description:
The locate function searches the index of an external file and finds the first case that matches
the specified condition. The file is positioned to the case's location in the file, but the case is
not loaded into memory. To load the case into memory, use the retrieve function after the
locate function.

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

The rel-op is one of the following relational operators: =, <, <=, >, or >=,

The alpha-ex is an alphanumeric expression which specifies a set of case identifiers or a key.

180

If the relational operators are < or <=, then the file is positioned at the case with the largest key
which satisfies the condition. If the relational operators are > or >=, then the file is positioned
at the case with the smallest key which satisfies the condition.

Return value:
The function returns a logcial value of 1 (true) if a case is found and O (false) otherwise.

See also:
find

Open Function
The open function opens and keeps open an external file.

Format:
b = open(ext-dict-nane);

Example:
K = open(LOOKUP) ;

Description:
Under most circumstances neither an open or a close function is necessary to manipulate an
external file. In data entry applications, by default, an external file is opened when it is
operated on with an external file function, such as loadcase or writecase, and closed
immediately afterward. In batch applications, by default, an external file is opened at the
beginning of the run and closed at the end.

If you want to control the opening and closing of an external file, you can use the open and
close functions to do this. If you code an open function anywhere is the application logic, then
you must control ALL the opening and closing of the file

The open function opens the specified external file and leaves it open. The close function
closes an open external file.

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

Return value:
The function returns a logical value of 1 (true) if file is opened and O (false) otherwise.

Retrieve Function
The retrieve function reads into memory a case from the current position of an external file.

Format:
b = retrieve(ext-dict-nane);

Example:
X = retrieve(LOOKUP);

Description:
The retrieve function reads a case into memory from the current position of an external file. It
is intended for use only after a successful execution of the locate function.

181

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

Return value:
The function returns a logical value of 1 (true) if a case is retrieved and O (false) otherwise.

See also:
loadcase

Writecase Function
The writecase function writes a case from memory to an external file.

Format:
b = witecase(ext-dict-nanme[,var-list]);

[]indicates that this part is optional.

Example:
OK = writecase(Kl DS, CLUSNUM HHNUM LI NE) ;

Description:
The writecase function writes a case from memory to an external data file. It can be used to
update existing cases or to write new ones

The ext-dict-name must be supplied. It is the dictionary name defined in the data dictionary
for the external file.

The optional var-list defines the case identifiers in the external file. The writecase function
concatenates the variables specified in var-list to form a string whose length must be the same
as the length of the case identifier in the external dictionary. All variables in the var-list must
exist in a dictionary or working storage.

If no var-list is provided, the current values of the identifiers in memory for the external file are
used.

If the case identified by var-list already exists, the writecase function will overwrite the existing
case. The writecase function automatically generates and updates the index file (with
extension IDX) for the external data file.

After a case is written to an external file, the external dictionary variables for that case remain
in memory. If the application does not assign new values to all variables in the external
dictionary before the next writecase function is executed, then values from the previous case
will be written to the external data file. Use the clear function to clear the values of these
variables.

Return value:
The function returns a logical value of 1 (true) if the write is successful and O (false) otherwise.

See also:
loadcase

182

Files

File Types

Data Entry Applications consist of the following files:

Data Entry Application file (.ENT) specifies all other files contained in the data entry application
and includes other application information.

Forms file (.FMF) specifies the data entry forms. There is usually one form file per application,
but there may be multiple forms files. Each forms file contains one data dictionary file (.DCF)
which represents the primary data file that is being created or modified.

Logic file (.(APP) contains CSPro language statements.

Message file ((MGF) contains text for messages displayed during data entry.

Help file ((HPF) is reserved for future use.

Other Data Dictionary files (.DCF) is optional, representing secondary data files (such as
lookup files) which are read and/or written to during data entry.

Batch Edit Applications consist of the following files:

Batch Edit Application file (.BCH) specifies all other files contained in the batch edit application
and includes other batch edit application information as well.

Edit Order file (.ORD) specifies the order in which the logic in the application is executed. An
edit order file ((ORD) contains one data dictionary file (.DCF) which represents the primary
data file that is being edited modified.

Logic file (.(APP) contains CSPro language statements.

Message file ((MGF) contains text for messages displayed during data entry or batch editing.

Other Data Dictionary files (.DCF) is optional, representing secondary data files (such as look
up files) which are read and/or written to during batch edit.

Cross Tabulation applications consist of the following files:

Cross Tabulation Application file (.XTB) specifies all other files contained in the cross
tabulation application.

Cross Tabulation Specification file (.XTS) contains variable names and other parameters which
define the tables. The file also names the associated data dictionary file.

Logic file (.APP) is reserved for future use.
Message file (MGF) is reserved for future use.

Help file ((HPF) is reserved for future use.

183

Data Dictionary file (.DCF) contains the physical format of the data file(s) to tabulate.

Data Entry Application File (.ENT)

The Data Entry Application file is the master file for a data entry application. This file specifies
all other files contained in the application, along with other information.

CSPro allows you to open, close and save data entry application files. When you do so, all
other files associated with the application are also opened, closed or saved.

The application file is an ASCII text file which may be viewed with any text editor, such as
CSPro's Text Viewer or the Windows Notepad. It is not recommended to make changes to this
file outside the CSPro environment. Advanced users might do so, however, to change the
names of associated files from the CSPro assigned defaults.

Batch Edit Application File ((.BCH)

The Batch Edit Application file is the master file for a batch edit application. This file specifies
all other files contained in the application, along with other information.

CSPro allows you to open, close and save batch edit application files. When you do so, all
other files associated with the application are also opened, closed or saved.

The application file is an ASCII text file which may be viewed with any text editor, such as
CSPro's Text Viewer or the Windows Notepad. It is not recommended to make changes to this
file outside the CSPro environment. Advanced users might do so, however, to change the
names of associated files from the CSPro assigned defaults.

Cross Tabulation Application File (.XTB)

The Cross Tabulation Application file is the master file for a cross tabulation application. This
file specifies all other files contained in the application, along with other information.

CSPro allows you to open, close and save cross tabulation application files. When you do so,
all other files associated with the application are also opened, closed or saved.

The application file is an ASCII text file which may be viewed with any text editor, such as
CSPro's Text Viewer or the Windows Notepad. It is not recommended to make changes to this
file outside the CSPro environment. Advanced users might do so, however, to change the
names of associated files from the CSPro assigned defaults.

Data Dictionary File (.DCF)

Each data file manipulated by CSPro must be described by a data dictionary. The data
dictionary file contains information defining the layout of a data file, including levels, records,
items, value sets and values.

184

CSPro allows you to explicitly open, close and save data dictionary files independently of
other application files. You must be careful when you do so if more than one application uses
the data dictionary.

CSPro applications may optionally contain data dictionaries which represent secondary files,
such as Look-up files, which are opened during data entry.

The data dictionary file is an ASCII text file which may be viewed with any text editor, such as
CSPro's Text Viewer or the Windows Notepad. It is hot recommended to make changes to this
file outside the CSPro environment.

Form File ((FMF)

The forms file contains information about forms, their fields, text and rosters. The forms file
also contains the name of the associated data dictionary file. Fields and rosters have links into
the data dictionary.

The flow during data entry, that is, the order in which forms and fields are entered, is defined in
the forms file, not in the data dictionary.

CSPro allows you to explicitly open, close and save forms files independently of the application
file. When you do so, the associated data dictionary file is also opened, closed or saved.

Note that if you open a forms file you will not have access to its application's logic. Generally,
only advanced users open forms files explicitly.

The forms file is an ASCII text file which may be viewed with any text editor, such as CSPro's
Text Viewer or the Windows Notepad. It is not recommended to make changes to this file
outside the CSPro environment. Advanced users might do so, however, to change the name
of the associated data dictionary file.

Edit Order File (.ORD)

The Edit Order File is a text file that contains information about the sequence in which fields
defined in the associated data dictionary are edited during batch editing. Each item in the
associated CSPro Dictionary is listed in the Edit Order File in the sequence in which the
procedures for that item will be executed.

Table Specifications File (.XTS)

The Cross Tabulation specification file contains tables, dictionary items/value sets and other
information which defines a set of cross-tabulations. The file also contains the name of the
associated data dictionary file. Items and value sets have links into the data dictionary.

CSPro allows you to explicitly open, close and save Cross Tabulation specification files

independently of the application file. When you do so, the associated data dictionary file is
also opened, closed or saved.

185

The Cross Tabulation specification file is an ASCII text file which may be viewed with any text
editor, such as CSPro's Text Viewer or the Windows Notepad. It is not recommended to make
changes to this file outside the CSPro environment.

Logic File ((APP)

The logic file contains all the CSPro language statements which control the application. There
is one logic file associated with each application.

CSPro does not allow you to explicitly open the logic file. It is opened only when you open its
associated application.

By default, the logic file has the same name as the application file, just a different extension.
This is not a requirement, however. Advanced users who change the name of this file must
also remember to change the corresponding name in the application file.

The logic file is an ASCII text file which may be viewed with any text editor, such as CSPro's
Text Viewer or the Windows Notepad. While you may make changes to this file outside the
CSPro environment, CSPro provides a powerful text editor which is integrated with the CSPro
compiler.

Messages File ((MGF)

The message file is a text file where you can store message text and an associated message
number. For more information see Message File.

Helps File ((HPF)

The help file contains information related to CAPI (Computer Assisted Personal Interviewing)
data entry applications. Such information includes question text to appear on the screen with
each field and help screens to appear when the operator presses the help (F1) key.

The CSPro interface does not fully support CAPI applications in this release.

Program Information File (.PFF)

Program information files (PFF) are used to run applications (data entry and batch edit) or
tools (tabulate frequencies, sort data, export data, reformat data, compare data, and
concatenate data) in production mode.

The PFF file stores the name of the application or tool, the data file(s) to be used, and any
runtime parameters specific to the application or tool.

You can use a PFF file as a command line parameter for CSEntry, CSBatch, CSFreq, CSSort,
CSExport, CSReFmt, CSDiff, or CSConcat.

See also: Run Production Data Entry, Run Production Batch Edits, Run Production Frequencies,

Run Production Sorts, Run Production Exports, Run Production Reformats, Run
Production Compares, Run Production Concatenates

186

Tables File (TBW)

The tables file (TBW) is a text file that contains information about a table layout such as stubs,
the headers, column size, etc.; and the table data. This file is read by the Table Viewer to
produce a "published" table.

Area Names File ((ANM)

The following is an excerpt from the area names file for Popstan (popst an. annm). As you can
see, the first section identifies the type of file, i.e., an [Area Names] file, and then the CSPro
version number is given. (Note for IMPS CrossTab users: You can use the IMPS area name file
[*.ann] asis.)

Beneath that, the [Level s] section provides the names of the geographic areas (levels) that are
defined under the [Ar eas] section. The number of levels named must agree with the number of
areas defined. Following this example is an explanation of the [Ar eas] section.

[Area Nanes]
Ver si on=CSPro 2.4

[Level s]
Name=Pr ovi nce
Name=Di stri ct

[Areas]

0 O = Popstan

1 0 = Artesia

1 1 = Dongo

1 2 = [dfu

2 0 = Copal

2 1 = Baj a

2 2 = Bassac
3 0 = Dar i

3 1 = Argentina
3 2 = Benl at a
3 3 = Bri st ol

The very first line following the [Ar eas] section is the name of the country. It is considered the
‘zero'th level, and hence, has 0 0 = Popst an, where the first column represents the Pr ovi nce
level, and the second column represents the Di st ri ct level. This will be the only line in the
entire file that will have a code of 0 0.

Now begin to list the geography for the first named level (i.e., Pr ovi nce) in Popstan, which in
our example is Art esi a. If you were only defining one level, you would immediately proceed to
define the next province (Copal). However, in our example we want to define a second level,

[Di stri ct]; therefore, immediately after defining the first province (Ar t esi a), we must name all
districts in that province.

187

Note that each line begins with 1, as this is Art esi a's province code (as defined in Popstan's
data dictionary); the second column lists the district code, again as defined in Popstan's data
dictionary. If a third level had been named (e.g., Tr act), then all tracts would follow each district
to which they belonged.

For illustrative purposes, we have written the names indented according to their level. You can
choose to do this in your own file as you wish—it will make no difference in the processing of the
file.

If you want to use the tables generated from CrossTab to create thematic maps, the Area
Processing feature must be used. Further, the number of levels defined in the . anmfile must
not be greater than the number of polygon levels defined in your . map file.

Finally, when creating your . anmfile, separate each line item within the [Ar eas] section by either
commas, spaces, or a combination of both. Hence, any of the following would be acceptable to
define an item at the district level:

o 3 15 Shari f
. 3, 15 Shari f
o 3,15 = Sharif

Map File ((MAP)

The map file (MAP) is a text file that contains information about the map and contains the map
polygon data points.

Map Data File (.MDF)

The map data file ((MDF) is a tab delimited text file that contains the statistical data associated
with the map and give the map location associated with the data.

For details on the format of the Map Data File see the Map Viewer User's Guide.

188

(0]
L 01T 7= 1o) 121
(@ 0= = 100 |G o £t =T [T oo S PRSRRR 123
|
!
L 01T 7= 1o) 121
(O 0= = (0]G o £ oT =T [T T SRS 123
$
$ 117
%
%
L 01T 7= 1o) 121
OPEIAtOr PrECEUEBNCE ...ttt et e e e e e e ettt e e e e e e e snnbabeeeaaaeeaanns 123
%d
EITMSY FUNCHION ...ttt e e e e et e e e e e e e s nbbnbeeeaaaeeaanns 173
WITEE FUNCLION ...ttt e e e e et e e e e e e e s aabbe e e e e e e e e e nnnneees 176
%f
LT 7o R 18] 1 1T o PSSR 172
(gL 10T Tt o T o PR SRRPPR 176
%s
LT 7o R 18] 1 1T o PSSR 172
(gL 10Tt o T o PP SRRPPR 176
&
&
L 01T 7= 1o) 121
OPEIAtOr PrECEUEBNCEcci ittt ettt e e e e e e et e et e e e e e e anbbbbeeeaaaaeaanns 123
*
*
ODEIALO ...tttk nnnnnes 121
OPEIAtOr PrECEUEBNCEcc ittt e e e e e e sttt e e e e e e e snnbbbeeeaaaeeaanns 123
1 TP PUTTRP 187
APP
Batch Editing APPIICALIONScooiiiiiiiieiii ettt e e e bbb e e e e e e e sabbaneeeaeas 3
[o ol 1[N =T o] o] R PP RRPT 186
.BCH

189

Batch Edit Applications File [.DCh]........eeiirii i 184

Batch Editing APPIICALIONScceieiiiiiiieiiie e e e e s s e e e e e e s s e e e e e e e e ennrnneeeees 3
.DCF

Batch Editing APPIICALIONScooiiiiiiiieiii ettt e e e bbb e e e e e e e sabbaneeeaeas 3

Cross Tabulation APPIICALIONSooiiiiiiiiiiii e e e e e e e e eneeees 4

Data Dictionary File [.ACT]eieiiiee e e e 185

Data ENtry APPHCALIONSueiiiiie ettt et e e e e e e s bbbt e e e e e e e e e abbaaeeeaeas 2
.ENT

Data ENtry APPHCALIONSueiiiiie ettt e e et e e e e e s e bbbt e e e e e e e e e anbbaeeeeaeas 2

Data Entry Applications File [LeNT]......uuiiiiii i a e e 184
FMF

(D= L= B =t Y A o] o] 1o o = 2

FOrMS File [FMI] e e e e s e e e e e e e 185
HPF

(D= L= B = Y A o] o] [T o = 2

HEIPS FlE [LNPI] et e e e e e 186
Y OSSP UPPP 188
1Y | USSP OTPPR 188
.MGF

Batch Editing APPIICALIONScooiiiiiiiiieiii ettt e e e e et e e e e e e e e sabbaneeeaeas 3

Data ENtry APPHCALIONSueiiiiie ettt et e e e e e e s bbbt e e e e e e e e e abbaaeeeaeas 2

MESSAGES File [.MOI] e 186
.ORD

Batch Editing APPIICALIONScceie it e e e e e e e s s e e e e e e s enrrnaeeeees 3

Lo [@ o L= gl T 1= o T | SR 185
.PFF

Program Information File [.pff]coooeeeeiiee e 186

RUN Production BAtCh EdItScoiiiiiiiiiiieee ettt e e e e e 86

RUN Production DAta ENEIYoooiiiiiiieiei ettt e e e e s e e e e e e e e nnneeee 68
B 1 =1 PRSP OTRTOPP 187
T T PRSP UP R TUUPTTTRTO 82
XTB

Cross Tabulation Application File [.XtD].....ueeireeii e 184

Cross Tabulation APPIICALIONScciiiieiieiiii e e e s s rr e e e e e e e nnneees 4
XTS

Cross Tabulation APPIICALIONScciiiieiiiiiii e e e s e e e e e e e e nneeees 4

Table SpecifiCations File [XIS] ...uuuuiriiieie e e e e e e e e e e e e e nnrrnneeeees 185

/

/

L 01T 7= 1 (o) 121

OPEIAtOr PrECEUEBNCE ...ttt et e e e e e e ettt e e e e e e e snnbabeeeaaaeeaanns 123

A

N

ODIALO ...tttk ettt nnnnnnns 121

OPEIAtOr PrECEUEBNCEci ittt e e e e e e ettt e e e e e e e snbbbbeeeaaaeeaanns 123
|

ODEIALO ...tttk nnnnnes 121

OPEIAtOr PrECEUEBNCEcci ittt et e e e e e e ettt e e e e e e e anbbbbeeeaaaeeaanns 123

190

+
L 01T 7= 1o) 121
(@ 0= = 100]G o £ oT =T [T oo - USRS 123
<
<
L 01T 7= 1o) 121
OPEIAtOr PrECEUEBNCEcci ittt ettt e e e e e e sttt e e e e e e e sntbbbeeeaaaeeaanns 123
<=
OPDEIALO ...tttk nnnnnnes 121
OPEIAtOr PrECEUEBNCEcc ittt et e e e e e e sttt e e e e e e e snbbbbeeeaaaeeeanns 123
<=>
OPDEIALO ...tttk nnnnnnes 121
(O 0= = 100]G o £ oT =T [T oo PSSR 123
<>
L 01T 7= 1o) 121
(O 0= = 100 |G o £t =T [T oo S RRRRR 123
L 01T 7= 1o) 121
OPEIAtOr PrECEUEBNCEcc ittt e e e e e e sttt e e e e e e e snnbbbeeeaaaeeaanns 123
>
>
OPDEIALO ...tttk nnnnnnes 121
OPEIAtOr PrECEUEBNCEcci ittt e e e e e e ettt e e e e e e e anbbbbeeeaaaeeaanns 123
>=
ODBIALO ...tttk nnnnnnes 121
OPEIAtOr PrECEUEBNCE ...ttt et e e e e e e ettt e e e e e e e snnbabeeeaaaeeaanns 123
A
P o ISTo] (V) (3 Lo 11 Te] o 11 g o PP PRTRT 38
o= o A L Tod 1o o PSR 143
Add
(D 1= W 1 (=] 0 D OO PP P PP PRPPTP PPN 34
DEMOAE FUNCLON ..ottt sttt e ettt e e sttt e e s bt e e e s sbbe e e e s nbbeeeesnnbeeeeaa 144
[Tt o T F= L Y = 1= 0= PR 33
[0 PSPPSR 33,34
[T o o] (o [T PUPP PP PPPPPPRTR 33,34
LY 2= 1L LR RUUPPPPRPPR 33,34,35
VAIUE SBL ...ttt e e e e ettt e e e e e e e bbb e et e e e e e e e nbbreeeaaaeeaana 33,34,35
Y Yo (o = T o 1 TR 49
Yo (o = T I o] L= OO PRTRT 99
Yo (ol 1= (o LS (o J= T o] o [PPSR 49
F Yo (o B = (oI W o] 1 o PRSP 50
Yo [o I I o 1T o FS (o = W L 1= (- PR 52
AAVANCE STALEIMENT ...eeiiiiiiiii ettt ettt e e st e e s aba e e s anbre e e s anbbeeeeaneee 144
F o I IS4 Vg T I 1= [£ 55
Yo =] = (] 1 1= o | PSR 129

191

Yo =T o1 1= L 1 PSR 126

P[] T Va1 T 41T G TRl N o = = PSR 115
Y o] g =T o 10 T 41T o | (= o R 27
AlPhanNUMETIC VarBDIES ...t e e e e et e e e e e e e e aneeees 114
Y o PSPPSR 121, 123
ODBIALO ...tttk nnnnnnes 121
OPEIAtOr PrECEUEBNCE ...ttt et e e e e e e ettt e e e e e e e snnbabeeeaaaeeaanns 123
L0 L I 1= o =P P PP POTPPII 123
Y PSR SR 187
APP
Batch Editing APPIICALIONScceieiiiiiiieiiie e e e e s s e e e e e e s s e e e e e e e e ennrnneeeees 3
[Yo o 1= = o] o) R 186
P Y o] o] o= 1 a1 g TN =d o o7 =To 11| = PSR 109
Applications
2 T (o] T =011 4 o S 3
104 (0171 oo I TP PPPRRPT 10
L0 ==L o o TR TP RRTT 5
CrOSS TADUIALION ...ttt e ettt e e e e e e sttt e e e e e e e e anbbbbeeeaaaeeaanns 4,5
(D1 B = g1 YT TTTTTTPRPRPRTRPRN 2,3
Dropping @ Fleeeeiiieei ettt e e e et e e e e e e e e e e e e e anneeee 11
INSEIHING @ FlE....eeiiieieee ettt e e e e e s st b et e e e e e e e e e sanbbeaeeaaens 11
Ty AN o 18 o PP RR PSP 9
L@ 0= 11 o SR 8
=T 00101V Ta o = T PR 11
- 1/ o PSSR 10
Area
TADUIALE ...ttt e e e e e et e et e e e e e e ranb e e e e e e e e e e anbbeeeeaaeeaaaa 98
Area Names
L 1T (TP 98
Area Names File (LANM) ...t e e e et e e e e e e e e aanb e e e e e e e e e e nneeees 187
APEA PIOCESSINGeittiiiieie e ettt e e e ettt e e e oo e e a bbb e et e e e e e e s b b bbe e e e e e e e e s bbbbeeeeaaeeeaannbbbeeeaaaeeaanns 91, 92
AFTNMELIC OPEIALOISeiiiiiiiiieiiee ettt e e e ettt et e e e e e e e bt e e e e e e e e e e e annbbeeeaaeeeeaannneees 121
N = NS = =7 0 1= o 130
P ST 1o [0 0= 1 A0S = L =T 1 =T o PSR 135
ALHDULES SEALEMENT ...ttt s bt e et e e st re e e s anbae e e e eneee 135
YU 100 0 F= L[l o 11 (=] o1 o PSS 82, 86
[T 0] €= B =] o 0] g £ 86
Manipulate AUOMALIC REPOISceiiiiiie e e e s e e e e e s e e e e e e s s s er e e e e e s e e nnnneees 82
F N] = Lo L U o 1o o FO TP SUPT R 164
B
Batch
L070] 141 o)1= TP PP PPPRPPT 84
(oo [TV A1 TP PERTTP 74
IMESSAGE VIBWeeeeeeeiee ettt ettt e e e oottt et e e e e e e e ab bt bt e e e e e e e e aanbb e e e e e ee e e e e annbbeaeeaaeeeaannneees 74
[0 o F TP TTTRTRPPRRPRPRRRN 85, 86
THEE VIBW ..ttt ettt ettt ettt e e e a bttt e e e ettt e e ea bt e e e e sabe e e e e anb b et e e enbb e e e e enbeeeeennneeeas 74
Batch Edit
Application File [LDCR]eeeeeeiee e ———— 184
Y o] o] o= 11T 1 3
1] (o o [UTox Ao o RSP RRPPR 73
KEYDOAId SUMMAIY ..oeiiiiiiiiieiece et s s e e e e s s e s e e e e e e e s s snan e e e e e e s s s ansntnneeeaeesannnnnnees 89
IVIENU SUIMIMIGTY ..ttt sbnnnn e 88
RUN Production BAtCh EdItScoiiiiiiiiiiiiieeeeieiee ettt ettt e e e e 86
TOOIDAI SUMIMAIY ... ittt e e e e et e e e e e e e s e raabbe et e e e e e e e annbbeeeeaaeeaana 89

192

BCH

Batch Edit Applications File [.DCh]........oeirriiiii e 184

Batch Editing APPIICALIONSoceieiiiiiiieiiie e e s s s e e e e e s st e e e e e e e e snnrnneeeees 3
Bell

ChaNQING EITOF SOUNToiiiiiieiiie ettt e e e e e e ettt e e e e e e s bbb e e e e e e e e s annbbbeeeaaaeeaann 64
Blanks

LS (] oI 18] od 1T] o PP PP PP 163
BOX STALEMEBNT 135
By

DO SEAIEIMENT ...ttt e e e e e s s e et e e e e e e s b e e et e e e e e e s nnbbe e e e e e e e s s annnnees 139

C

Case

0 Yo T o 1o o R 172

S] %= T =T U 1o o SRR 152
107 17 o HE P PR 22
Case tree

1] 010 1RO PPPPRPRPN 62
LOF= L L S PP PP PPPPPPPPPPP 19
Center TEXE AN FIEIUSueiiiiiie ettt ettt e e e e e s e bbb e e e e e e e e s bbbbeeeaaaeeaaans 55
Change Data ENtry OPLiONS.......ooiuieiieiiie ettt e e e e e s st e e e e e e e e sanbbbeeeaaaeeeaans 61
Change Default TEXE FONL ...ttt e et e e e e e e s s bbbbeeeea e e e e aans 64
L0 aF= T o To I o 11 0 o [= T TP PT PR PPRTT 81
L0 g = T To TN = o] G Yo T 1o T SRR 64
(O aF= T o To I (= [0 I S0)t] 4 SRR 64
L0 g = T To T I 1= [0 1o o | SRR 64
L0 g = TaTo T= I €1 o] o F- | o o | (PSR 64
Change Roster Column Heading Properti€Suicciiiiiiiiiiee e esiieie e e s s e e e e e s e ssnnreeee e e e e e 53
Change RoSter OCCUITENCE LADEISoicei it e e e et e e e e e e e 54
Change the Order Of ENMIY ...ttt e e e e e e sttt e e e e e e s ebbbreeeaaaeeeaans 61
Change the Print PAge SEIUP ...ttt e e e e e e abbreee e e e e e aans 12
Change the TabIE THHlEeeeiiiie e e e e e e et e e e e e e e s abbbeeeaaaeeeaans 98
ChANQE thE VIBW ...ttt et e e e e s ettt e e e e e e e e kbt be e e e e e e e e aabbbbeeeaaaeaaanns 14
104 g F= T To TSI YT o [0 1LY O PRSP PPRPT 14
Changing

[=T @7 o] o] = PEER 50

L 1Y o N 0] 1= £ PR 58

(o) T 1 Lo o] =T 4 (T PR 57

Lo T o =T =P 58

(A I (0] 01T 1= PR 57

0 1] (] G o (0] 0 1= =P 59

TaDUIAtION PAramMEtErS....ccoo oottt e e e e e et e e e e e e e e abbbeeeaaaeeeaans 95

ISl o (0] 0 1= 1= TP PPT R TUPPPPPRPP 60
CharacCteriStiCS Of IEEIMS ...t e e e e e e e s bbb e e e e e e e e e aabbrbeeeaaaaeaanns 2
(O L=T T gl U o Tox o] o T PP EUTT TP PPRRPR 172
L6 (oI T AN o] o] [Tor= i o o (U PR PP PPRRT 10
L@ [o 1T o U] o Tod 1T o PO RPTTPPPRTPRRN 177
(@30 g [odo o (=N (] [od 170 o [P RPTTPPPRTPRPN 153
1070 (o [1= o - ORI 3,78
Color

(01 10 PP PP P PP PRPPTPPPON 58

1= TP PP PP P PP PPPPPPPPPPPR 60
1070] (11001 g IV Z= T T= 1] [T PRSP PPRTT 92
Comments

Y o To 11 | TP PPTTPPP 113

193

T T = T 1o o = Y S 18

(70 oY= =N I - | - 13
(70 1 a] o= LT = 1]] 1T o PSSR 156
(07e] g g o1 IR T Y o] o] o= 11 o] o KPR PT PSP PPRRT 84
10670] 101 o 1[0 oo | o3P PP URTPPPRPT 67
1067e] 10T o]1[=T gle (<) 1= 1U] L £ PP PPRTT 66
(7] aTor= 1 U 1o o1 1[0] o FH TR TR PPRPPR 157
CONCAIENALE DALA......ciiiiiiiiiiiiiiieie ettt ettt e e e e e e e e e e e e e e e e e e 13
(670] 0o 11 o] o J TP EUT T TROPUPPPRRPRN 119
LO70] 8151151 (=T oV O 1= o 4P RSRR 3
Controlling Program Flow
LT aTo [o0 o= r= 1 (=] 0 1= | SRR 146
ENAIEVE] STALEMENToi ittt e st e e s st e e e anneeeas 145
Convert
1E=T 0 E (o ST U] 11 (=1 0 PSRRI 37
N[] o T=T O (o JE] ([To TR PP ERPT 157
Sy oY o= (oI 1Y = T o TP UUUUTPPPRRPT 13
SHANG 10 NUMDET ...ttt e ettt e e e e e e s bbbt e e e e e e e e e anbbnbeeeaaaeeaanns 163
Converting
An IMPS Data Entry APPlICALIONcoiiiiiiiiiieieie e e e e e s 48
AN ISSA Data ENtry APPHCALIONueiiiieeiiiiet e e e e e e e a7
ISSA OF IMPS DICHONGIIESeveiiititee ittt ettt sttt st e e st ae e e st e e s nnbaeeeenneee 32
Copy
L= PPRP 103
1= 0 PP PSR PPP 103
Copy All Or Part Of @ TabIEccoiiiiiiie e e e e s er e e e e e s s e e e e e e e eaans 103
(070 1Tt i1 [0 I =Xy (o] £= TR PPRTTR 80
1070] 41T ox i o] o [HUU PR PT PR PPRPT 77
(700 | o =¥ T i o] o T TP EUTTTROPUPPPRPP 165
Create
A CroSS TaDUIBLION. ...t e e e e e e e e e e rnnbeeeeaaeas 92
A Dictionary fOr @ NEW File......coo i e e e e 31
A Dictionary for an EXIStING FilEuuiiiiiiiiiiiiicee e e e e snnrnre e e 32
A FrequenCy DiStribBULIONcii e e e e e e e s r e e e e e e snn e e e e e s 92
F N A=Y Y o] o] oo o P 5
A New Batch Edit APPIICALIONeeiiiiiiie e e s e e e e e s s s nnnrneeeeee s 7
A New Cross Tabulation ApPPliCatioN...........cccuiiiiiiec e 8
YN N =T D = L= W o 1 o g - R 6
A New Data Entry APPHCALIONueiiiiieee ettt e e e e e s e e e e eeee s 7
A ROSEET .t 52
A SPECIAIIZEA REPOIT. ...ttt e ettt e e e e e e st e e e e e e e e e snnbeeeeeaeas 82
F N I 1oL 3PP 93,94
A Thematic Map Of RESUILSooieieee e 101
AN ATEA NAMES FlB ...t e e s e e s b e e e e 98
L1 ==L (== aTo I o 11 1o T oSSR 65
L0 oL R I 1o 11 =i o] o HO P PRSP 92
L1 =T= i o = T 1= 1 o SRR 93
1] (o o [UTo3 Ao o RSP RRTPRR 90
LG}V 0 =T (o IR U] '] 0 = VYRR 106
IVIENU SUIMIMIGTY ..tttk sbnbnnes 104
TOOIDAI SUMIMAIY ...ttt e e e e e e e e e e e e s s b bbb e e e e e e e e e aannbaneeaaans 105
Cross Tabulation Application
L0 ==L o o TR TSP RPTT 8
1L a1 o] PP RRPT 184
Cross Tabulation APPIICAIONSueieiiiiie e e e e e e s bbb e e e e e e e e sbbereeeaaaeeaaans 4
LO1S] 27 (o] o [ST SPPRP 86, 87

194

L8 1 o1 1 S 68, 69, 70
CSPro

1] (o o (U1 1o o PP 1

IVIENU SUIMIMIGTY ..ttt ettt bsbnbnn e 15

TOOIDAI SUMIMAIYot e e e e et e e e e e e e e e a bt e et e e e e e e s aabbbeeeaaaeeeanns 16
(610 o ool ¥ [o1 1o o FH PP RUT TP PPRPPRN 165
Cut

Copy
(o] gl o= 1] I I 11 [0 LSRR PP PPRTT 56

D

Data Dictionary

L 1= 11 o S 6

L1 [[PSP OTUPRRTTPRIN 185

1] (o To [UTo1 o o PSPPSR PRP 16

KEYDOAId SUMMAIY ..oiiiiiiiiiieie e et s s e e e e e e e st e e e e e e s e s snsa e e e e e e s s s nnnntneeeeeeeeannnnneens 41

(6= 1= R PP 18

[0 PR PRR 21

IVIENU SUIMIMIGTY ..ttt ettt bsbnbnn e 39

NE= 10 L= PPN 18

TOOIDAI SUMIMAIYottt e e e e e et e e e e e e e e st be et e e e e e e e aabbbeeeaaaeeeana 40

RTAT = LR | TP PP PRI 2
Data Edit Application

L 1= 11 o SR 8
Data Entry

[0T [ox 1T o I PP PR 68
Data Entry Application

L 1= 11 o SR 7

1 L= =T o SRR 184

RV = U | TP UUP PP 2
Data Entry Designer

KEYDOAIT SUMIMAIY .ottt e ettt e e e e e s e bbbt e e e e e e s s e aanbbeeeeaaeeeaannneees 72

IVIENU SUIMIMIGTY ..ttt sbnnnn e 70

TOOIDAI SUMIMAIY ... it e e e e e et e e e e e e e s e anbbe et e e e e e e e aanbbeeeeaaeeaaans 71
Data ENtry INSLAIATIONcooooiiiiiiieii et e et e e e e e e et ee e e e e e e e nnenees 67
D= L= B =YY, =1 { T Yo [o 1S 43
Data ENtry Path ...t e e a e e e e e e e e e e annnnaens 44
Data File Organization

Y oo 0| TP 20

= ToTo o L3RR 22
DAtA FIlE SIZEeeiieiiiiiie ettt e e b e e e b e e e e 20
Data IEEIMIS ... 116
D e WO (o =T g 172 11[0] o FUU TSP PURT 2
D= L= B R =T oo o [T PPURTT RO 22
DA Ty e 27
(D= 1e Y =1 [T 1 o] o RO TSP SRR 3
Date

3250 F= LC= N LU T o) o PSRRI 174
DCF

Data Dictionary File [LACT] .. .uuuiiiieiiiiiiie s e e 185

Ta I =T=11ed g T8 =0 [2Y o] o] [To o] o = 3

In Cross Tabulation APPICALIONSeeviieiiiiiiie e e e s e e e e e e s e e s e eeees 4

IN Data ENtry APPIICALIONS......ciiiiiiiiieiie ettt e e e e et e e e e e e e e e sanbbaaeeeaeas 2
Deciding What FOrms and ROSIEIS t0 USEcoiiiiiiiiiiiiiiiei et a7
Do 0 g o L O g =T = ol 1= SO PO URTT R 29

195

(B LYo 0 0 F= | od F= Yo <Y 28

[D=TolF= T 1T L PP SR 108
Default
SPECIAL VAIUEBS ...ttt e e e e e et e e e e e e e anenees 120, 121
DS = LU = o] | TP URTT R 64
DEfINE 8 UNIVEISEottt ettt e e oo ettt e e e e e e e bbb b e e e e e e e e e aanbbeeeeeaeeeaannnnens 94
D Lo T B Tex (o] =T o VA Y o 1= T PO PRSP 11
DEICASE FUNCHION ...ttt ettt e e e e e s bbbttt e e e e e e s bbb be e e e e e e e e enbbnbeeeaaaeeaanns 178
Delete
[Tt o T F= T Y = 1= 0 0= PR 36
10 o ¢ TP PSP UPP P PP PPPRPPR 36
[0 PP 36
= ToTo o PR PR 36
RV 2= L1 = SR TPRTPRR 36
VAIUE SBL... ettt et e ettt e et a b e e n b e e et ae e e b re e e e e 36
Delete a File from an APPIICALION.oi i e e e e 11
Delete @ TADIE ..o e e e e e e e e e e 100
DEIELE FUNCLION. ... ettt ettt e oo e s bbbttt e e e e e e e e bbb be e e e e e e e s e nnbnbeeeaaaeeaann 166
(D12 110 V1= £ TP URUPTPPPRRPR 113
[D]=T o o [SN o [ox 1T] o HU PR T TRTPUPPPRPPR 144
Denom
0 Yo T o 1o o R 172
3T 1o 3 = 1Y/ 2,11
Y oo 0| ST PRTPRP 17
Yo Lo [T Yo TN =1 1= 0 =T o1 £ 33
(00] 1)Y= T o] o W PP PPPPRTRPN 13
L070] 017 o 1 oo TP PT TR PPPRPP 32
L0 =T 1 o o [T TR 31, 32
(D] [(PP PPRTTT P 36
(=11 o= | TP PRTTTP 11
INSErtING EIBMENTS ...ttt e e e e e e e e e e bbb b e e e e e e e e e snbbaneeaaaas 35
INtroduction t0 Data DICHIONAIYueiiieiiiiiiiee et e et e e e e e e e snbbeaeeeaeas 16
Y= T PR 11
1Y o T 11 Y SRR 35
101V T A 0T o PR 32
oAV T = 1= 0 0=) PR 37
N[0 (=TT PP PRPPTR TP 39
SEIECE EIBMENTS ...ttt e e st e e s bt e e s nrb e e e e nnraeee e 36
SPECIAL OULPUL. ...ttt e e e e e e s b bbbttt e e e e e s s bbbbeeeaaaeeeaannbsbeeeaaaaeaanns 11
T e 11,12
VIBWING LAYOUL ...ttt e ettt ettt e ettt e e e e e e s bttt e e e e e e e s aanbbeeeeeaeeeaannbbeeeaaaeaaanns 33
VAT e (g PP PP 11
DISPIAY FUNCLION ...ttt ettt e e e e e ettt e e e e e e e bbb e et e e e e e s e nnbsbeeaaaaeeaanns 172
(Do Y= 11210 0 T=T 0| S PP PP PP PPPPPPPPPPPR 139
Document DiICtioNary EIEMENLSeiviiiiiiiiiiiiee e e e e s e e e e s e et ae e e e e e e s e nnnnees 39
[=T @7 o] 1o =S 50
Draw BOXES ON @ FOIMN ... 51
D] do] o= 1 LT o] 0 =T TN o] o] o 11 To] o S 11
Dump
UNAEFINEA VAIUES ..ottt e e ettt e e e e e e e e b b e e e e e e e e e anneees 96
Dynamic IMmputation (HOt DECK).......cuiiaiiiiiiiiiei et e e e 78
E
[l L1 I Tex 1 o] o F TR T TRUPUPPPRPP 158
Edit Order File (LORD)eiiiiieiitie ettt e e ettt e e e e e e e bbb b e ee e e e e e s s nbbreeaaaaeeaaan 185

196

Edit Report

F XU (0 o 4 T £ [82

S =Yo7 =T SRR 82
=01 =T o Jo] TSP PURT 3
o [I (ST 75
=l 1111 o [T SUTT 3
o 111 410 (T 145
Else

L] =1 (=] £ 1] 0| T 142
Elseif

LY £= 10T = | 142
End

O Te (o] g) F=1 =] 4 < 130
Enddo

[0 I3 = L (=] 0 =Y) 139

Lo S t= 1 (=] 1 1 1= | P 141

NV 11 LIS =1 =] 1 11T 0L 143
(<1010 (o] o U] o J TR UT TR PPRPPR 146
Endif

1] =1 (=] 1 1<) 0| T 142, 143
[Lo SNV S IS = L =] (1= 0 L T 145
EndRecode

[LeTod0 Yo LIRS r= 1 (T8 0[] | 135
[0 [T =To AR e= 1 (=0 0] | 146
ENT

Data Entry Application File [LeNt].........uviiirieii i 184

Data ENtry APPHCALIONSueiiiiie ettt et e e e e e e s bbbt e e e e e e e e e abbaaeeeaeas 2
L L (ST Y =1 (=] 1 4 1= | A 147
=0 E]o T Tex 1o o PP T PR PPRPP 172
[(0] GRS Y0101 [T 64
V7]] £ 109
) £= 1 (=] 1 1= | AT 141
3 PSSR 154
|3 q][Tod Lo [=Tod =T = 1 1 SRR 108
EXPOIT DALA......ccc i e ———— 13
D q 0 (=TT [1 1 SRR 119
A (=T = L T o) = VSR 11
External Files

AN 1o 1 U | T 124

S 1= T ¢ T TP PRTTP R PTTPPPRRPP 124

F

Field

[0] | 64

(V= 1 1= 18

[0] 0= 1= TP PUP TP PPPPPPRTR 58, 59
[T [25, 45, 46

Y 1o | S 55
LT[75

INSerting in an APPIICALIONcoii e e s e e e e e e e e ee s 11

Program INformation ((PFF)eeeie i 68, 86, 186
L1 =T Y/ 01T PSSR 183
[YT T g (ST U (o £ o] o [P 158
[LTI W (=TT 9
Find

197

[Tt o T F= LV = 1= 0 0= PR 38

[T o I T 10 o 179
1o [TV T = 0] S 79
Flow of Program

ENAGrOUP SEAEIMENTeiii ittt e e e e e e ettt e e e e e e e s e bbb beee e e e e e e sansbnbeeeaaaeeaanns 146

L Lo SNV Y £= 1 =11 A L= | T 145
FMF

Data ENtry APPHCALIONSueiiiiie ettt e e et e e e e e e s bbb e e e e e e e e e snbbaeeeeaeas 2

FOrM FIlE LM et e e e e e e e 185
Font

L2y = 10 L A I A 64

T Lo 64

gL =Y g T | 12
[0 0 (=Y 12
[l] £ (=] 1 1= | 141
o (ol o101 o) =g [0 = TP URTT O 61
FOIM FIlE ((FIMIF) ettt e oo e bbbttt e e e e e e e bbb e e e e e e e e e e nbbbbeeaaaaeeaanns 185
[0 1.0 1SR 44
(0011 0 0 TS | [3
L0 10 A ES I T 9
L (=T 01T o (o =T TP URTT T 13
L =T 01T o Toy VA 1) 1] 0o) o S 92
0|1 Yo (=Y o 14
(O gTe (o] o I D I=Tod t= = 1o 1 130
[T {0 1 112

] 1 o o) R 126

G

Generate a Default Data Entry APPICALIONviiiiiiiiiiiiiieee e e e e e e e e e e e 48
Geographic Areas

I 0101 = (T 98
LCT=Tolo (= To] a1 To o (0Tt 1T o T PR PT PR PPRTT 91
LTS O [o F TR PPRRT 15
(11 o] 011 (=T g VT (o2 ([0 T 159
(1] 1 (o] (U 147
Global Procedure

[L<Tod F=Y = A (0] 108

g L0 T07<Yo (U] T 109

H

Handle UNAEfINEA VAIUESuveiie ittt e et e e e e e e e e e e e e e e s e e raaa e as 96
L (== o [T 12
1= oS 15
Help File in Data Entry APPIICALIONSooiiiiiiiiiiee et e e e e e 2
HEIPS FlE ((HPE) ettt ettt e e e e e e e bbb e e e e e e e e e e nbrreeeaaaeeaanns 186
Hot Deck

Batch Editing APPIICALIONScooiiiiiiiieie ettt e e e e e e e e e e sbbaneeaaeas 3

Dynamic Imputation [HOt DECK]uuiiiiiiiaiiiiieee ettt a e 78

L0 L3 o TP PRTTT P 83
HPF

L (=110 TN T L= I T R 186

T - gAY o] o] o= L1 o] 1 2

198

Lo LY a Lo i{or=X o] T L (=] 1 1 22
If and Only If

L 01T = 1o] 121, 122, 123
(@] 0 1=T = 100 TG o] £= o =To [T o o = SR PRRRRR 123
F STALEMENT ... —————— 142
T aTo] o] Ao [Tod F=T = U1 T o H TP URTUTPO 108
IMPS Dictionary
L070] 017 o 1 oo TP PP UUUTPPPRRP 32
Imputation
ADOUL ... 77
(O] ¢ (=T 1] o A o £ PSSR 80
Dynamic
[[0 =T o] P PP 78
Ta I =T= 1ol g T8 =0 T 2Y o] o] [To- 1o o = 3
] - o PRSP 77,78
USING HOE DECKS .veeiieeeiiiiitie it e ettt e e e s e sttt e e e e e e st e e e e e e e s s snsnbe e e e e e e s sasnnttnaneeeeesannnnnnees 83
IMPULE FreQ FlE.. .. ettt ettt e e e e sttt e e e e e e s ab bt e e e e e e e e e s annnnnees 85
T g oW (=] Tox 1o o W TP PSRTTP 138
In
I STAEMENT ... 142
OPDEIALO ...tttk nnnnnnes 122
(O 0= = 100 G o £ oT =T [T oo SRR 123
INCIUAE PEICENTS ... ettt e e s sttt e e sab et e e sabb e e s snbe e e e e snba e e e s anbbeeeesnneeeas 96
o] g] [S3 1= Lo T PP 79
Insert
(D 1= W 1 (=] 0 DO PP P PP PRPPTR TP 35
[Tt o F= T Y = 1= 0 0= PR 35
IS 35
L LTt o] (o S 35
ValUE ..., 35
ValUB SEL.... e, 35
Insert a file iN an @PPIICALIONeoiiii e e e e e 11
INSEIT @ TADIE ... e —— 99
T ES=T o 0 Tox 1T o PP PRR 167
Installing Data ENtry APPlICAtIONScoceeiiiiiiiee e s s e e e e e e e e s e r e e e e e e s nnnnnees 67
o | SRR RR 154
LT 0 = =T o0 o £ 86
Introduction to...
2T (o] T =011 1 o PSSR 73
(O (0TI =1 11] - 1o 91
L8] o o LSO PRSPPPPPPIN 1
CSPIO LABNQUAGE. ... ettt ekttt bn b nnnbnnes 107
(D 1= W BT od 1 0] g F=T (=T 16
(D (e W g VA B TSI (o =T PP PRTTTP 42
ISSA Dictionary
L©0] 01T o 1 oo PSSR 32
ltem
Yo Lo 1oV P 33
(070 01V =T R (e IS U] o1 (= o PO PTPPPRTRPN 37
DT = T Y/ 01 26
(D1 e B 1Y/ o1 TP 27
(D 1Yot T 1RO g = = 1o (= 26
(D LYod [T 1RO g = = 1o (= S 29
(1Yot g T LI o Tt 26

199

DL 1] (< 36
o [I (ST 75
[T o [T 38
[TST=T o TR 35
(1= 1 o 1< R 17, 26
[T 0o 11 [T PUPP T PUUPTPPPRTRT 26, 27
[To 11 Y2 TP PRTTT 35
[V E= 1 1= PR 18, 26
[N L0 (S 39
(@ LoTo 0 [£ (=] g o7 =TS 26
(@ LoTo [£ (=] g o7 =TS 28
L (0] 0= 1P 26
ST (o 1 S 38
RS ez T 20] 110 o 26
SEArtING POSITION ...t e et e e e e e e e e bbb e e e e e e e e s nbbbeeeeaaeeeaaas 27
T e 26, 28
WAL= (o TN 1| T 26
A=) (o TN 1| T 29
1T g IO P2 1= 103 (=) (02T 2
Item with Multiple Occurrences
B IF= 1010 1= 94
L= 0 1 25
J
Join and Split ROSLEr COIUMNS ..ot e e e e s s r e e e e s s et rr e e e e e e s e snnrrnneeeees 54
K
L=V 1 o3 1 o] o T PSSR 179
Keyboard Summary
= 1 (o = [90
(@1 {0 TS IF=1 01U =1 1o o 106
(D= Le W B od1Te] o F- oY TP PP PPRTTTI 41
(D (e W g VA B ISTS (o =T PP PPRTTT P 72
1L (o 1o U S Y= o T 147
L
Labels
(D= Le= W B od 1Te] g T- oY PP PRRTT 17
Length
=T TR 27
[T o 11 1 11] 1T o SRR 159
Level
2o Lo 1T SRR 34, 35
[0 L<Y 1] (< 36
o [I (ST 75
[T o [T 38
[TSY= o TP 35
(1= 1 o1 T 22
[o 11§ Y2 TSP RUTT P 35
(V= T 1< 22
[(=S 39
L (0] 0= 1P 22

200

(D= L= B L od 1T} - 1 Y PR 21
IS 1 oo T PO UPTT T 85
[T= To [of= 1T LU Tod 1T o NPT URUPUPPPRRPR 180
(I Tor=1 (3N U] o1 1[0 o PR TTT TP 180, 181
00 e 154
Logic

Batch Editing APPIICALIONScooiiiiiiiieiii ettt e e et e e e e e e e e sbbaneeeaeas 3

o111 o PR 76

1 L= = o o] SRR 186

Ta I =T= 1o g T =0 [2Y o] o] o 1o o = 3

Ta I = W = gAY o] o] o= L1 o] 1S 2

VBV ettt b e oo h et e o Rt e e e R b et e e e R b et e e e R bbe e e e anbae e e e anbreeennnnee 74
[0 [To= U b o] == (o S RRSRR 119
[oTor=1 o] o 1=T = 1 (o] £ T U PP UTT R TRURTPPPRPPRN 121
Lookup Files

L0 L3 o TP RRPT 126

M
Main Dictionary

T e 11
MEKEIEXE FUNCHION ...ttt e e ekttt e e e e e e e bbb e e e e e e e e e e nbbnbeeeaaaaeaaans 160
Manipulate AUOMALIC REPOITSuviiiieeiiiciiiiiee e e e ssr e e e e e s s r e e e e e s s ae e e e e e s s e snnaeareeeeeesannnnnens 82
N PP RR 188
= Vo BT To T S 13
Maps

Create @ ThEMALIC MAP.......icerieiiee e et e e s e e e e e e e s s st e e e ee e s sa e ereeeeessnsnnrneeeaeeesanns 101

Map Data File [.mMAf]......oo e 188
= U0 1 13U PUTT O PPPPPPTRT 12,13
MathematiCal OPEIALOISoiiiiiiieii et e ettt e e e e e e s bbb e e e e e e e e e s nbbraeeeaaaeeaanns 121
[V = P U Tod 1T o TP UT T TRURTPPPRPPR 167
Maximum Number of Records

Y o To 11 | PP PP 25

e o] o<1 1Y T=] 1 1] o [T PP PRTTT P 23
Y T PR PR TSR 188
MENU SUMMATY ..o 15, 39, 70, 88, 104

2 1ol I =0 1 PP 88

L@ (oL SR I 1o 11 =i o o PP OTPPRP 104

L0201 o F PP P PP PRPPPPR 15, 16

(D= L= B 1 od 1T} - 1 Y PR 39

(D (e W g VA B ISTS (o = TSP RRTTP 70
Message File

Y o To 11 | TP PTPTTPPP 125

1L 1 0T | PP RTPT 186

In Batch Editing APPHICALIONS ...ttt e e e e e e rabb e eea s 3

Ta I = gAY o] o] Lo L1 o] 1 2
1 LSTT Y=o L= =S 74
MGF

Ta I =7= 1o g T8 <o [1iTlo J7AY o] o1 [T 1o =SS 3

Ta I = W = gAY o] o] o= L1 o] 1S 2

MeSSAgES File [.MAf ... 186
[T T U T Tod T o TP TRUPTPPPRPP 168
T g o] g =T T=1 [PP 45
Missing

201

SPECIAI VAIUEBS ...t e e e e s e e e e e s e e r e e e e e e an e e e aeeeaaan 120

Modify

DEMOAE FUNCLONcoiiiiiieiiiti ettt ettt e e sttt e e st e e e s sbbe e e e s sbbeeeesnabeeeeaa 144

DICtIONAIY EIBMENTS ...ttt e e e ettt e e e e e e e e e sanb b e e e e e e e e e e nnneees 35

FEBIM e 35

[N TP PRRTTP 35

=T oo (o (R TP TP PRRTTP 35

LY Z= 1L LR RPTT 35, 36

VBIUE SO ...ttt ettt oot oottt e e e e e e e b b et e e e e e e e e e abbe et e e e e e e e anbbeeeaaaeeaaaas 35
1o 113 Y= Y 1=][RR 100
Move

[Tt o T F= TV = 1= 0 0= PSR 37
Move Around a BatCh APPICALIONccoiiieiiiiiiee e e e e e e e 81
MoVE ArouNd @ DICHONAIYcceiiiieie e e s et e e e e s e e e e e e e e s an e e e e e e e s e s snaraaeeeeeeesannnnnnns 32
V[0V T o AN (o]0 To AN o] o] L ToT= 4o o 1SR 9
Multiple Occurrences

TADUIALE TEEIMS ...ttt et r et e e e e s e aab e e e e e e e e e e anbbeeeaaaeeaann 94
Multiple Ranges

LY 2= 110 1 PP PPT T TUTUPPPRPP 31
MUIEIPIE RECOIT TYPES .. teeiieeeeiiitt ettt e ettt ettt e e e e e e bbbttt e e e e e e s abbbaeeeaaeeeaaanbbseeaaaeeeaannnnees 20
[T o] SR ST=] =T o 1o o DT TP URTT R 36

N

Name of File

FIlEename fUNCHION ...t e e st e e e s sareee e 158
Names

(D= L= B od 1T - 1 Y2 PR 18
N E= TR T I £ S SRR 14
NE= AT o YT o = Tt o = LY/ 32
NE Yo Fo Vil o AN o] o] ITor=1 i o F- ST PUTT 9
Next

Y S] = 1 (=] 1 1= o | TP PPP T OUPRUPPPPRPR 151
NOCCUIS FUNCHON ...ttt et e e e e sttt e e e e e e e bbbt e et e e e e e e e nnbnbeeaaaaeeaanns 169
N[0T 1 0] o] 1A £= 1=]1 0= o | ST T TRUPTPPPRPP 148
Not

L 01T 7= 1o) 121

(@ 0= = 100 g o £t =T [T oo PSSR 123
[N T AN o] o] [To=T][I = 1 1RSSR 120
Notappl

L 01T 7= 1o) 121

SPECIAI VAIUEBS ... e e e e s s e e e e e e e e e e e e e e e annrrrnrraaeeeaaan 120
Notes

Yo (o |10V PP PP 18

Document Dictionary EIEMENTS..........uuuiiiiieeeiiieeet ettt e e e e e 39
NUumMber of DECIMAl PIACESueiiiiiie et e et e e e e e e eneaees 29
N[] o T=T g (O IE] (o [P TP PT T URUPUPPPRPPRN 157
[N U] o1 £ PP RR 118
Numeric

F N £ = | TP UUPPPPPPRPRT 114

(D =TolF= 1= 1T o PSP PTUPRRTTPRIN 132

T q 0 (=TT [1 1R 119

1] o TP P PP PP PPPRPRR 27

VAHADIES ...t e e e e e e e e e e aaneees 113,114

202

Occurrences

10 o TP PP P PP PP PP PPPRPPR 28
ONFOCUS BEVENT ... ittt e sttt e e ettt e e s et b e e e s sbbe e e e s sbbeeeessnbeeeeans 148
Open an exisiting APPICALION. ... i e e e e e e s e e e e e e e e e e e eeeaan 8
(O] o<1 I 1T o 1] o H TP ERT T TROPUPPPRRPTN 181
Operator ID

2] G (] TP PP PPPRPP 61
OPEIAtOr PrECEUENCEeiiiiiiee ittt ettt e e e e ettt e e e e e e e e aaabbe e e e e e e e e aaabbbeeeaaaeaaanns 123
Operator VS SYStem CONLIOIEAooiiiiii e e e e e e e 43
L@ 0] =10 £ PP P PP PPPPPPP 121
Option

Y= 4)]| PR 66, 83, 84
Or

L 01T 7= 1o) 121

(O 0= = 100]G o £ oT =T [T oo S PRSRRR 123

TEULN TADIE ...ttt e e st e e st e e e anbre e e e eneee 123
ORD

Edit Order File [LOr] ... oot e et e e e e e e e e e e e e e e e nnaeees 185

In Batch Editing APPIICALIONS ...t e e e e e e e eeeaeas 3
(O] (o [T g [TP EUTT T TROPUPPPRPPT 185
L@ (o =T o)l =l 111 o To AT PPRPTR 76
Order of Executing BatCh Edit EVENTSc.uviiiiiii e e e e s n e e e e 111
Order of Executing Data ENtry EVENTSccuviiiiiei e stre e e e e s s sieen e e e e e s snnnnaeen e e e e e e 110
(@70 F=Ta V2= 1[0] 4 IXe) 0 | r- PSR 2
Organization Of DAta FIlESciii i e e e e e s s e e e e e e s s nrrrneeaaeeeeanns 20
L 111 o 101 1= SRR 85

P

PAIBIMETEIS ... eeeiiei e ittt e oottt e e e e s e h b e et e e e e e e bbb e et e e e e e e s a b b e b e et e e e s e e an s brnne e e e e e e e nnnne s 95
PAITIAI SAVE ...ttt ettt e e e ba e e e b e e e aneee 62

AATOW ettt ettt e e e oo oo bbbttt e e e e e e e b b ee e et e e e e e e nbbeteeaaeeeaannnrees 62, 63
L L1 o PSSP 44
Percents

Change Tabulation ParamMetersooueiieiiiieeeeeiei ittt e e e e e aeee e e e e e 95

INCIUAING 1N TADIES ...t e e e et e e e e e e e e snbbereeaa s 96
PErSISTENT FIEIAS .ottt et e e e sttt e e st e e s rnbbe e e e aneee 45
PFF

Program Information File [.pff]ccooieriiiiieie e 186

RUN Production BAtCh EILSc.ueeiiiiiiiiieiiiiee ettt 86

RUN ProducCtion Data ENEIYceieeiiiiiiiiieee et e e e s s e e e e s st ae e e e e e s s snnnnrnae e e e e e s e e nnnnnees 68
(L0 TSI (1] (o1 1o) o [PPSR 161
POSCRAI FUNCHION ...ttt ettt e e e e e e et bt e e e e e e e e s nbrbeeeaaaeeaanns 162
Position

FEBIM e 27
POSItION WIthIN @ STINQeeiiiiiiiee ettt e e e e e et e e e e e e e e s ebrbeeeeaaeeaaans 161
Positioning

Relative OF ADSOIULE ...t e e e et e e e e e e e 37
011 o o o 133
(] o] o o 132
(Yo = 0 1T S 12
Print all or part of @ DOCUMENT........covii it e e e e e e e e e e s s s s ar e e e e e e s nnnnnees 12
Print Page Setup

L1 - 0o 1o PSRRI 12

203

Lo 1A 1= o] [104

1oL (T gL = T D To o o 1= o | RS 12
[(0 TP TP PP PP PPPPPPPPPPR 132
Production
=1 (o] o T T 1) €= 86
(D e W = g1 YT TTRTRTRPRTRPRN 68, 69, 70
PrOgram FIOW ..ottt e e e e ettt e e e e e s ab bbb e e e e e e e e e aannbeeeeaaens 145, 146
Program Information File ((PFF) ...t 68, 86, 186
L 0] o= 1= TP URTT RO 22
1= [0 L PRSPPI 58, 59
10 o ¢ TP PSP UPP P PP PPPRPPR 26
[0 PP 22
= ToTo o PR PR 24
VAIUE SBL... ittt st et e e et a b e e e R b b e e e b ae e e e nbre e e e e 30
Protected Fields.......cooo o 45
LU 11 10 (=SSP 149
Q
L@ T 1153 1o = 11 [22
(@ 11153 i o a0 T= LT 2,19
R
RaANUOM ..., 155
Ranges
MUIIPIE WAIUE ...ttt e e e e e et e e e e e e e e s e sanb b e e e e e e e e e e e nnneees 31
T L = Lo L= I o1 o To [P PUPTT R 54
RECOTE STAtEMENT......oiiiiiiiii e st e e s st e e e sbae e e e nneee 137, 138
[RY=Toto] g o1 [TaTo l BTt o] o F= VYA @1 g T- T To =P EER 5
L= ToTo o R PP 75
Yo Lo 1oV P 33
(D=1 PP 36
T o PR 38
1 E] =] o SRR 35
[o 1= I 17,24
Y= O PR 23
Y =T LU Ty TN 0T o o= 25
[o 11§ Y2 TSP RUTT P 35
[N =10 PSPPSRI 18, 24
N[0 (=TT PP PRPPTR TP 39
L (0] 0= 1P 23
=0 [U= PR 24
=0 U= PR 23
1= 1 (o] o R PRSPPI 38, 39
TYPE VAIUE ..ottt e e e e e e ettt e e e e e e e s e anbbe et e e e e e e e e nnbbeeeeaaeeeaan 24
RECOIA TEBMS ..., 25
Tt o] (ol (0] o 1= 1= TP URTT RO 23
Ry ToTo] (o I 1Y/ o1 TP URTT O 23
T ot o] (o I Y o1 TP URTT RO 20
RECOIAS ... 22
=0 (o T O g - T g T 1= S 36
REENTEI STATEIMENT ... e e e e e e e e s r e e e e e e s s brrreeeeaeeeaaans 150
REFOIMMAL DALAeeeeiieiiie ittt ettt e sttt e e s bt e e s bttt e e e st e e e e s nbbe e e s anbbeeeennbbeeeeannee 14
(R IE] Vi To] T TR o] o T=T =\ (o =SSR 121
L= = LAY =0 =0 171 (o 11 o S 38

204

Relocate

[Tt o F= L Y = 1= 0= PR 37
Remove a File from an APPliCAtiON.........ccuuiiiiiii e 11
REMOVE trainiNg DIANKSccooi it e e e e e e e e s ae e e e e e e e 163
R d=To] (o [T gl o 11 o Vo F PP URTT RO 76
Report

F U 170 0 = L £ [P PP 86
R To [T =] 01 T G () VPO RRTT RO 62
L To [(=T TSP 24

= ToTo o SRR PR 24
=0 [T =T I =T o o o 1S 23
[RYT=T YT VAT Ao T o L PP RRR 116
Resize and Reposition ThiNGS iN @ ROSIENccvieii i e e e e e e e e 53
Ry 1oAY N U] Tod 1T o T PP RR 182
RETEVE TADIES....ci ittt e ettt e e s st e e s n b e e s nbe e e e e nnbbeeesaneee 13
RO IS . e 46
ROW VATTADIES. ... ettt e e et e e e e e e et b e e e e e e e e e nnneees 92
Run

N O3] o o T I To | TP PT TR PPPRRP 13

A Data ENtry APPICALION. ...t e et e e e e e e e e e e e e e aa 67

= = 101U = 11T o TP PUP R PTTPPPRRPP 100

T2 o] o] o (o] o PSRRI 85

Production Data ENMrYuvueiiieeei it e s s e e e e e s e st ee e e e e e s e s st e e e aeessssnnnrenneeeeesennnnnnens 68

RUN Production BAtCh EILSc.ueeiiiiiiiieiiiiie ettt 86

S
SV T I=T o] o] [[o3= 1 4o] o HU PR PRRPR 10
Save DICtioNAry AS NEW FlEuuiiiiiiiee ettt sb e e e 39
SAVE TADIES ...ttt e e b e e e e be e e e e nrreee e 103
Screen

10 PRSP 14
SCIEEIN LAYOUL.....ceiiiiiiiiiiieeei ettt ettt ettt ettt ettt et et et et et e e e e e e e e e e e e e e e e eeeeeeeeees 74
Search

DICtIONAIY EIBMENTS ...ttt e e e e ettt e e e e e e e e e sanb b e e e e e e e e e e nnneees 38
S T=T=T o TP EUTT TR PPRRPT 155
SEICASE FUNCLION ..ottt ittt ettt e e s sttt e e ettt e e s sbbe e e e s abbeeeessbbeeeesanneeaeans 150
Select

[Tt o T F= TV = 1= 0 0= PR 36
Select Relative or Absolute POSItIONING........c.cvviiiiieeiiiciieeee s e e e ee e e e e e aans 37
SElECE TADIE CIIS ...ttt e ettt e et e e e s nbbe e e e s nrreee e 102
SEUENTIAI FIBIAS ettt e e e e e s s bbbttt e e e e e s s bbbbeeeaaaeeaanns 45
Set AHDULES STALEMENT......oii e e e e e ee e e e e e e 134
Set CoMPIlEr DEFAUILS.........ooi et e e e e e e et re e e e e e e e 83
Y=l o] o] | PR UT TP PPRPPR 134
Set EXPlCIE MENU OPLION ...eeiiiiiiiiiiiiie ittt ettt e ettt e e e e e e s s bbbt e e e e e e e e e sanbbbeeeaaaeeaanns 83
Y=y [101 o] o3 ST EUT T TROPUPPPRPPRN 134
Set Statement

F 1] o0 (=P 134, 135

3 d 1L 1 o o | R 134
ST (U T 68
Shape to Map

L0 01T o 1 oo SRR 13
Sharing EXEINAI FIlESeeiiiiiiiiiieeiii e e e e ettt e e e e e e e s abbbeeeaaaaeaaans 124
ST o] (3 R =Tolo] (o I 1Y/ o 1= SO UURTUPPRRT 20
SIZE OF DALA FIES....cco ettt e e e e e st e e e e e e e nbbbe e e e e e e e e aans 20

205

skip

] Oz TSI = L= 11T o | SRR 152
Skip
Y = T LU F= U] (] o I (o TSP PRRTT P 58
Y S] = 1 (=] 1 11T o | PP PPP T RUPRUPPPRRPT 151
SOCCUIS FUNCLION ..ttt e e oottt e e e e e e ettt et e e e e e e e e aanbbeeeeaaeeeaannbbeeeaaaaeaann 169
STo] g D - VPP P PP PPPPPPPPPPP 13
SOM FUNCLION ..ttt e e oo ettt et e e e e e e e bbbt e e e e e e e e e aanbbeeeeaeeeeaansbbeeeaaaeaaann 170
Sound
(O a=TaTo T aTo [N =1 o] RS0 18] o NSRS 64
S =T ol T= | LU o3 1T o SRR 174
Special OULPUL DICHONAIYviiiii i e et e e s s s e e e e e s s s s e e e e e e s ssssnraeeraaeeessnnsnsrneneaeeeaanns 11
SPECIAI VAIUBS ...ttt e et e e e e e s e st e e e e e e s s s snn e ae e e e e e e annnrrrnereaeeeaaan 120
Y o =Tel = 1= To [o 11 A = o o A USSR 82
Specific
IMPULE STATEMENT.....ciiiiiiiii ettt 138
Yo | 4 S PP PP PP PPPPPPPP 156
Starting Position
FEBIM e 26
Stat
IMPULE STATEMENT.....ciiiiiiiii ettt 138
Y E= 1 =] 11T 0] S PP EPPPP T PPPPPPPRPPR 112
] 1 o o) R 126
Y = Y[4 01U = = o) o PSR 3
Y = [4 01U = 4o) o 77,78
0] ¢S] = (=] 1= o 152
SHING EXPIrESSIONS ...ttt e ettt e e e e s e e bbb e e e e e e e e e s aanbbeeeeeaeessaansbbeeeaaaaaaann 119
SHANG 10 NUMDET ...ttt e e e e e e e bbbttt e e e e e s e aanbbe e e e e e e e e aanbbbeeaaaaeaaanns 163
SHANG VANADIES ...ttt e ettt e e e e e s e ab et e e e e e e e e abbbeeeaaaaeaaans 114
SHAP FUNCLION ...ttt e e e e e et bt e e e e e e e s e s anbbe e e e e e e e e aanbbbeeaaaaeeaanns 163
SEUCTUIE EQILS ..eeeeeiie ettt oottt e e e e e e s bbbttt e e e e e e e s bbbbe e e e e e e e e snnbnbeeeaaaaeaann 3
YU o1 (=0 o F P PP P TP PPRTT 28
1070 a1/ ¢ i (o 1 1 (=] 1 DT PP P PP PPPPPPPPPPPR 37
10 o1 (T o L= PSPPSR 25, 26
SUBSCHPE VANADIES.......eeeeiiie e e e e e e e e e r e e e e 117
SUDSHING EXPIrESSIONSuttviiiieeii s ittt e e e s s st e e e e e e ss et e e e e e e s s sntbaaeeeeeeesssssteeeeeeeesaansssnnnneaeesaanns 120
SUM FUNCHON. ..ttt et e ettt e e e rb et e e e st be e e e sttt e e e s abbeeeesabbeeeesabbeeeesanbeeeeans 170
Summary
Batch Edit KEYDOAIT ...t e e et e e e e e e 89
BAtCN EQIt MENUeeiiiiiiie ettt e e e e ettt e e e e e s e e anb b e e e e e e e e e s e anneees 88
BatCh Edit TOOIDA ...ttt e e e et e e e e e e e anneeee 89
Cross Tabulation KeYDOAIMcoooiiiiiiiiie e e 106
CroSS TabUIALION IMENU ...ttt e e e e e et e e e e e e e sbbnbeeeaaaeeaaans 104
Cross Tabulation TOOIDAT..........cooiiiiii e 105
COPIO IMEBINU ...ttt e et e e e e e e s bbb e e e e e e e e s bbb e et e e e e e s e nnrreeeeeeeeaaaa 15
(035 o (o T oo]| o= | S PSR PPPPRTRPN 16
Data Dictionary KEYDOAIMcoceiiiiiiiiiiiiie e es e s e e e e s s re e e e e e s s e ee e e e e e e e e nnnneees 41
(D= L= W L od 10 g = 120 1Y 1= o [PSR 39
(D= 1= W 1 ox 110 g = 1A o o] o - PR 40
Data Entry Designer KeyDOoarduueiiiiiiiiiiiii et 72
Data ENtry DESIGNET IMEBNUcciiiiiiiiiiiiie e ettt e e ettt et e e e e e e et et e e e e e e s e e sanbbeaeeeaeesaannneees 70
Data Entry DeSigner TOOIDATooiiiiiiiiie ettt e e e e e e s anneeee 71
= 0 Yo T o 1o o BT PP ETPT 172
ST U] o] o Lo] o AP PP PP PPPPPPPPPPPPP 15
SYSAALE FUNCLION ...ttt e e e e e e e bbb et e e e e e e e e aanbbe e e e e e e e e aannbbeeeaaaeaaanns 175
)Y £S] o= U 0 o 1o o SRR 175

206

System vs Operator CONIOIEdueeiieiii e e e e e e s e e e e e e e e 43

)Y 25] 110 0 L= LU] ox 1T PSSR 176
T

Table

X o PSPPSR 99

(1Y = = 100

1 E] =] o PSSR 99

[o 11 Y2 TP PTPT 100

] | S P USRI 104

Y= L= PP 103
Table Cells

ST =] =T ot PRSPPI 102, 103
Table Specification File (. XTS) ..t e e e s e e e e e s e rer e e e e e e e e snrrnneeeeees 185
LI 101 SRV AT PO PPTOTPPRPRPRPN 13
BIF= Lo (=TS 1L (R =1 187
LI 0] (ST I == T PP 9
Tabulate

)V CT=ToTo | = To] g (o AN Y- TP PP PRTTT 98

[(=T [0S (o =T ST PRTTT P 13

P I CBINTS . e e e e aaaaaat 95, 96

L0 0o [T T T=To Y= 11U =T 95, 96

Values
Y oo | PP TURRT 97
L4 - o 1T USSR 95

Weights
Y oo 0| PRSP 97
L4 o= o 1T SRR 95
Tabulate Items with Multiple OCCUITENCESuviiiiiee e e e e 94
Tabulate Values and/or WEIghLSttt e e e e sere e eaee s 97
Tabulation

(O (0TI = 11] = o] 92,93

Frequency DIStHDULIONu ettt e e e e e e e e e e e e e e nnneeee 92

e 18- 0 4[] (=] £ TSP 95

0 SR OTUPPRRPPPRN 100, 101

UNIVEBISE ettt ettt ettt ettt e e ettt e e ekttt e e ettt e e e aabb e e e e aab bt e e e anbbe e e s anbbe e e e anbbeeeeanbbeeeennnee 95
Tabulation Application

Y oo 0| PRI 4

L 1= 11 o S 8
Tabulation SPeCIfiCAtIONS FlE.........cceiiiiiie e e s e e e e e e s e e e e e e eeeeaans 4
LI 3L TSP R 187
Text

F Y o o PP PTPTR TP 55

(1Y =101 o] o S 64
= RS 0T 1 TP TTR PR 118
=G AL= 3T L=] 13
Thematic Map

L0 - L= TP PRPPP P PPPPPPPPPPP 102
Then

1S £=1 (T 0 =T 0| PP 142
LI o) PP PR TP 117
LI SIS T LS o) VAR (o = 14
ISR o] o 18 (o 31 =10] 1o o o [E TP PP 14
QLI L= AV T [0 14
Time

207

3253 110 L= 11] ox 1T o TSRS 176
Title

[] T8 C=T0S3 = = 1 =] o | 138
To

P \VZ= L g [TcIR) £ 1 (=] £ A1) | ST 144

Y] JS] r= 1 (=] 1 11 o | PP RPU P RUPRUPPPRRPT 151
L0 1 1T 64

=t (] 64
B 10T 0] o= G 0 1 o3 1o o N 163
I oTo] o= TSN] 0] 0= PRSI 16, 40, 71, 89, 105

= (od o = [89

(@1 {0 TS IF=1 o 10 =1 1o o S 105

(@351 o o T 16

(D= L= B 1 od 1T - 1 Y2 PR 40

(D= L= B = Y 1T o | = PSR 71
1 T0 £ 13,14
] (o ToToR =i U1 (o1 1o o [P 171
Trailing blanks

R 0 1101V 163
Tree

[N =T LTI | T 14

R ST] (0] £ PPN 14
I CLSIA T4 ZR 74
TrEES AN WINAOWScoieeiiiie it e e e e et e e e e e e e et e s e e e e s eeaabb e eeeseseasbaa e eeesssesaaabsseesseesnrranes 5
Truth Table

A 3 o 1 123
Type

=T TR 28

] 011 (=1 1 TR 28
TYPE OF DICHIONAIYeeiiieiiiee ettt e ettt e e e e e e s bbb e e e e e e e e ettt b e e e e e e s e e annnbnneeeaans 11
TYPE OF RECOIM ...ttt e e e oo e e bbb et e e e e e e et bbb e e e e e e e e e annbbnneeeaens 23

U

(010 [0 [y 1 T=T0 IAVA= 11U [T 95, 97

(D101 00 T TP 97

Iz 1010 1= 96
LU o [0 T O o= o T= TS 36
Universe

defining IN TADUIALIONS ... e e e e e e e e e e e e 94
Until

[0 I3 = 1 (=] 0 =Y | 139
(0] o] 0[] or] - TP T T TU TP 63
L8]] oL OF= TS I = (o [TSRO 45
(T (] A B o1 T 83
U S B SUPPOIT . e 15
Using

ST T A U T 1o o 170
L LS T o 0T W o N 1= PSSR 126

V

RV 2= Lo F= o I - - S 3
Value

Yo Lo 1o Vo S 33

[0 L<Y 1] (< 36

208

1S =1 o N 35
1= o 1 17
[o 11§ Y2 TSP RUTT P 35
[(=S 39
T ot (o I 1Y o1 PO PRTTTP 24
ST <T=1 (0] o [T 38
I 0101 = (T 95
L0100 [T 1 =10 T 95, 96, 97
Value Set
Yo Lo 1o Vo P 33
[0 L<Y 1] (< 36
T o 38, 39
1S =1 o N 35
1= o 1 30
[o 11§ Y2 TSP RUTT P 35
(V= T 1< 18
[(=TS 39
[0] 0= £ 1= TP PRRTTP 30
ST =TT (0] o IR 38
V=1 [0 31
=[S LIRS £ 30
B 2= [T 31
Varying
[0 I3 = 1 (=] 0 =1) 139
YT PSSR 62, 63
[DIST g g Lo To [=l U] T2 110 AT 145
RV T ANV L=T Y 4 o= Y = PR 63
View
101 o= T 0 To 1 oo FR TP URUTTPPPRPP 14
[V IS To] (=11 o [P 14
Y =T o J TP TRTR PPN 13
NS T0 0 [STS [T I (=T 14
B IE= o] LTS T[S 13
B I 1 = 13
B2 N o o Lo 64
VieW the DICIONAIY LAYOULuueiiiieeiiiiiieieie e e e ss st e e e e e s s st e e e e e e s snsnnaee e e e e e e s s nnnsaneneeeeesannnnnens 33
AV LTS UE= YA 2= 1 (TSI U T 1 oo 151
VSet
IMPULE STATEMENT.....ciiiiiiiie ettt 138
W
Weight
Change Tabulation ParamMetersooueiieiiiieeeeeiei ittt e e e e e aeee e e e e e 95
Tabulate Values and/or WeEIgNTSoooi it e e e e 97
Weights
B IF= 10101 F= 1 o o 92
Where
F =T = Lo L= T o 1o 1o R 164
(@0 18] 0| 10T T 1o [164
Y= 0l T T s 1o 1 168
YT T T T T (o 1 168
S 010 I U1 (o3 T o [T 170
NV 11 LIS = 1= £ 1] L T 143
Windows

209

I SIS SN o) VA 1o =PSRRI 14

I (ST o] o 38 (38 = 110 o USSR 14
RVAY 0T (T TN 1o 1o - PR 11
WOIKING STOrAgE Flecoeiiiiiee et e e e e e e et e e e e e e e e aneeeee 125
AT 1 (T 85, 86
T L 1[N 85
VT g1 (3 0 o3 1o o T 176
NV g1 (o= TY I U g o3 1 (o) o T 182
ATA YL = PR 83
X
XTB
Cross Tabulation Application File [XtD].....ueerieeiieec e 184
Cross Tabulation APPIICALIONScciiiieiieiiii e e e s s rr e e e e e e e nnneees 4
XTS
Cross Tabulation APPIICALIONScciiiieiiiiiiie e e e s e e e e e e e e e nnnneees 4
Table SpecifiCations File [XIS] ...uuuuiiiiieii s e e e e e e e e e e s snrraneeeee s 185
Z
4= (o T8 | 29

210

